Some Relations on the <i><sub>r</sub>R<sub>s</sub></i>(<i>P</i>,<i>Q</i>,<i>z</i>) Matrix Function

In this paper, we derive some classical and fractional properties of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mi>r</mi></msub><msub>...

Full description

Bibliographic Details
Main Authors: Ayman Shehata, Ghazi S. Khammash, Carlo Cattani
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/9/817
Description
Summary:In this paper, we derive some classical and fractional properties of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mi>r</mi></msub><msub><mi>R</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> matrix function by using the Hilfer fractional operator. The theory of special matrix functions is the theory of those matrices that correspond to special matrix functions such as the gamma, beta, and Gauss hypergeometric matrix functions. We will also show the relationship with other generalized special matrix functions in the context of the Konhauser and Laguerre matrix polynomials.
ISSN:2075-1680