Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face.
To solve the problem of the inability of traditional spray dust removal technology to efficiently restrain dust diffusion at the heading face, a multilayer spiral fog curtain dust control method based on spirally arranged pneumatic nozzles is proposed. In this paper, the k-ɛ turbulence model and K-H...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2022-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0266671 |
_version_ | 1811236480511639552 |
---|---|
author | Deji Jing Zhen Li Shaocheng Ge Tian Zhang Xiangxi Meng Xin Jia |
author_facet | Deji Jing Zhen Li Shaocheng Ge Tian Zhang Xiangxi Meng Xin Jia |
author_sort | Deji Jing |
collection | DOAJ |
description | To solve the problem of the inability of traditional spray dust removal technology to efficiently restrain dust diffusion at the heading face, a multilayer spiral fog curtain dust control method based on spirally arranged pneumatic nozzles is proposed. In this paper, the k-ɛ turbulence model and K-H droplet breakage model are used. First, different airflow fields are analyzed by simulating the simultaneous injection of different numbers of nozzles, and the motion law of airflow interaction is obtained. Taking the two-layer fog curtain as an example, a multiphysical field coupling numerical simulation of the two-layer spiral fog curtain applied in the field is carried out, and the variation law of its velocity field distribution and particle motion characteristics is analyzed. A similar experimental platform is established to verify the effectiveness of the simulation results and the feasibility of the dust removal scheme. The simulation results show that the double helix arrangement will form a rotating airflow with the cutting arm as the axis to cover the whole roadway section and produce a double-layer spiral fog curtain. The water mist is fragmented into smaller fog droplets under the action of rotating airflow, which improves the dust catching effect of the fog curtain. Experiments show that the dust removal rate and efficiency of multilayer spiral fog curtains are obviously stronger than those of natural dust reduction and traditional spray. After 3 minutes, a dust concentration of approximately 470 mg/m3 can be reduced to less than 4 mg/m3. The average dust removal rates of total dust and exhaled dust were 2.600 mg/(m3.s) and 0.189 mg/(m3.s), respectively, and the dust removal efficiencies were 97.01% and 94.32%. |
first_indexed | 2024-04-12T12:10:33Z |
format | Article |
id | doaj.art-b5a3123c3e8a432482b19265b9a694fb |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T12:10:33Z |
publishDate | 2022-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-b5a3123c3e8a432482b19265b9a694fb2022-12-22T03:33:36ZengPublic Library of Science (PLoS)PLoS ONE1932-62032022-01-01174e026667110.1371/journal.pone.0266671Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face.Deji JingZhen LiShaocheng GeTian ZhangXiangxi MengXin JiaTo solve the problem of the inability of traditional spray dust removal technology to efficiently restrain dust diffusion at the heading face, a multilayer spiral fog curtain dust control method based on spirally arranged pneumatic nozzles is proposed. In this paper, the k-ɛ turbulence model and K-H droplet breakage model are used. First, different airflow fields are analyzed by simulating the simultaneous injection of different numbers of nozzles, and the motion law of airflow interaction is obtained. Taking the two-layer fog curtain as an example, a multiphysical field coupling numerical simulation of the two-layer spiral fog curtain applied in the field is carried out, and the variation law of its velocity field distribution and particle motion characteristics is analyzed. A similar experimental platform is established to verify the effectiveness of the simulation results and the feasibility of the dust removal scheme. The simulation results show that the double helix arrangement will form a rotating airflow with the cutting arm as the axis to cover the whole roadway section and produce a double-layer spiral fog curtain. The water mist is fragmented into smaller fog droplets under the action of rotating airflow, which improves the dust catching effect of the fog curtain. Experiments show that the dust removal rate and efficiency of multilayer spiral fog curtains are obviously stronger than those of natural dust reduction and traditional spray. After 3 minutes, a dust concentration of approximately 470 mg/m3 can be reduced to less than 4 mg/m3. The average dust removal rates of total dust and exhaled dust were 2.600 mg/(m3.s) and 0.189 mg/(m3.s), respectively, and the dust removal efficiencies were 97.01% and 94.32%.https://doi.org/10.1371/journal.pone.0266671 |
spellingShingle | Deji Jing Zhen Li Shaocheng Ge Tian Zhang Xiangxi Meng Xin Jia Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face. PLoS ONE |
title | Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face. |
title_full | Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face. |
title_fullStr | Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face. |
title_full_unstemmed | Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face. |
title_short | Research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face. |
title_sort | research on the mechanism of multilayer spiral fog screen dust removal at the comprehensive excavation face |
url | https://doi.org/10.1371/journal.pone.0266671 |
work_keys_str_mv | AT dejijing researchonthemechanismofmultilayerspiralfogscreendustremovalatthecomprehensiveexcavationface AT zhenli researchonthemechanismofmultilayerspiralfogscreendustremovalatthecomprehensiveexcavationface AT shaochengge researchonthemechanismofmultilayerspiralfogscreendustremovalatthecomprehensiveexcavationface AT tianzhang researchonthemechanismofmultilayerspiralfogscreendustremovalatthecomprehensiveexcavationface AT xiangximeng researchonthemechanismofmultilayerspiralfogscreendustremovalatthecomprehensiveexcavationface AT xinjia researchonthemechanismofmultilayerspiralfogscreendustremovalatthecomprehensiveexcavationface |