Summary: | Lignocellulosic biomass can be used for producing biochemicals and biofuels through a sugar platform. However, the required pretreatment processes and hydrolysate conditioning typically involve high operational and installation costs. This study investigated the possibility of facile biofuel production using an attrition mill. After milling for one hour, 73.5% (w/w) of corn stover particles had diameters of less than 100 µm, with a mean diameter of 61.3 ± 3.3 µm. Attrition milling of corn stover produced only 0.39 ± 0.01 g L−1 soluble phenolic compounds. The enzymatic conversion of corn stover particles less than 100 µm was 79.8% after 72 h enzymatic hydrolysis. The hydrolysate (i.e., natural sugar) was not inhibitory towards the growth of Saccharomyces cerevisiae. The attrition mill did not require high temperature or pressure conditions and did not inhibit cell growth. Therefore, when the attrition mill is used for pretreatment, a simple biofuel process that does not require washing, detoxification, and solvent recovery could be feasible. Keywords: Lignocellulosic, Pretreatment, Biorefinery, Attrition mill, Mechanical pretreatment
|