Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers

An ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole tra...

Full description

Bibliographic Details
Main Authors: M. Mottakin, K. Sobayel, Dilip Sarkar, Hend Alkhammash, Sami Alharthi, Kuaanan Techato, Md. Shahiduzzaman, Nowshad Amin, Kamaruzzaman Sopian, Md. Akhtaruzzaman
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/21/7200
_version_ 1797512592557604864
author M. Mottakin
K. Sobayel
Dilip Sarkar
Hend Alkhammash
Sami Alharthi
Kuaanan Techato
Md. Shahiduzzaman
Nowshad Amin
Kamaruzzaman Sopian
Md. Akhtaruzzaman
author_facet M. Mottakin
K. Sobayel
Dilip Sarkar
Hend Alkhammash
Sami Alharthi
Kuaanan Techato
Md. Shahiduzzaman
Nowshad Amin
Kamaruzzaman Sopian
Md. Akhtaruzzaman
author_sort M. Mottakin
collection DOAJ
description An ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in V<sub>oc</sub>, PCE decreases with temperature. Defect tolerance limit for IL1 is 10<sup>13</sup> cm<sup>−3</sup>, 10<sup>16</sup> cm<sup>−3</sup> and 10<sup>12</sup> cm<sup>−3</sup> for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 10<sup>14</sup> cm<sup>−3</sup>. With the proposed device structure FTO/PCBM/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO shows the maximum efficiency of 25.45% (V<sub>oc</sub> = 0.97 V, J<sub>sc</sub> = 35.19 mA/cm<sup>2</sup>, FF = 74.38%), for the structure FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO the best PCE is obtained 26.92% (V<sub>oc</sub> = 0.99 V, J<sub>sc</sub> = 36.81 mA/cm<sup>2</sup>, FF = 73.80%) and device structure of FTO/WO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO gives the maximum efficiency 24.57% (V<sub>oc</sub> = 0.90 V, J<sub>sc</sub> = 36.73 mA/cm<sup>2</sup>, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO system provides better performance and better defect tolerance capacity.
first_indexed 2024-03-10T06:02:56Z
format Article
id doaj.art-b5b05d2c0cf04806a44e1b6d99271e0c
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-10T06:02:56Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-b5b05d2c0cf04806a44e1b6d99271e0c2023-11-22T20:45:36ZengMDPI AGEnergies1996-10732021-11-011421720010.3390/en14217200Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport LayersM. Mottakin0K. Sobayel1Dilip Sarkar2Hend Alkhammash3Sami Alharthi4Kuaanan Techato5Md. Shahiduzzaman6Nowshad Amin7Kamaruzzaman Sopian8Md. Akhtaruzzaman9Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, BangladeshSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaDepartment of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi ArabiaDepartment of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaEnvironmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, ThailandGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1292, JapanInstitute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang 43000, MalaysiaSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaAn ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in V<sub>oc</sub>, PCE decreases with temperature. Defect tolerance limit for IL1 is 10<sup>13</sup> cm<sup>−3</sup>, 10<sup>16</sup> cm<sup>−3</sup> and 10<sup>12</sup> cm<sup>−3</sup> for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 10<sup>14</sup> cm<sup>−3</sup>. With the proposed device structure FTO/PCBM/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO shows the maximum efficiency of 25.45% (V<sub>oc</sub> = 0.97 V, J<sub>sc</sub> = 35.19 mA/cm<sup>2</sup>, FF = 74.38%), for the structure FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO the best PCE is obtained 26.92% (V<sub>oc</sub> = 0.99 V, J<sub>sc</sub> = 36.81 mA/cm<sup>2</sup>, FF = 73.80%) and device structure of FTO/WO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO gives the maximum efficiency 24.57% (V<sub>oc</sub> = 0.90 V, J<sub>sc</sub> = 36.73 mA/cm<sup>2</sup>, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO system provides better performance and better defect tolerance capacity.https://www.mdpi.com/1996-1073/14/21/7200CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>CuOHTLWO<sub>3</sub>perovskiteSCAPS-1D
spellingShingle M. Mottakin
K. Sobayel
Dilip Sarkar
Hend Alkhammash
Sami Alharthi
Kuaanan Techato
Md. Shahiduzzaman
Nowshad Amin
Kamaruzzaman Sopian
Md. Akhtaruzzaman
Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
Energies
CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>
CuO
HTL
WO<sub>3</sub>
perovskite
SCAPS-1D
title Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
title_full Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
title_fullStr Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
title_full_unstemmed Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
title_short Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
title_sort design and modelling of eco friendly ch sub 3 sub nh sub 3 sub sni sub 3 sub based perovskite solar cells with suitable transport layers
topic CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>
CuO
HTL
WO<sub>3</sub>
perovskite
SCAPS-1D
url https://www.mdpi.com/1996-1073/14/21/7200
work_keys_str_mv AT mmottakin designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT ksobayel designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT dilipsarkar designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT hendalkhammash designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT samialharthi designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT kuaanantechato designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT mdshahiduzzaman designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT nowshadamin designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT kamaruzzamansopian designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers
AT mdakhtaruzzaman designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers