Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers
An ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole tra...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/14/21/7200 |
_version_ | 1827678192086810624 |
---|---|
author | M. Mottakin K. Sobayel Dilip Sarkar Hend Alkhammash Sami Alharthi Kuaanan Techato Md. Shahiduzzaman Nowshad Amin Kamaruzzaman Sopian Md. Akhtaruzzaman |
author_facet | M. Mottakin K. Sobayel Dilip Sarkar Hend Alkhammash Sami Alharthi Kuaanan Techato Md. Shahiduzzaman Nowshad Amin Kamaruzzaman Sopian Md. Akhtaruzzaman |
author_sort | M. Mottakin |
collection | DOAJ |
description | An ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in V<sub>oc</sub>, PCE decreases with temperature. Defect tolerance limit for IL1 is 10<sup>13</sup> cm<sup>−3</sup>, 10<sup>16</sup> cm<sup>−3</sup> and 10<sup>12</sup> cm<sup>−3</sup> for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 10<sup>14</sup> cm<sup>−3</sup>. With the proposed device structure FTO/PCBM/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO shows the maximum efficiency of 25.45% (V<sub>oc</sub> = 0.97 V, J<sub>sc</sub> = 35.19 mA/cm<sup>2</sup>, FF = 74.38%), for the structure FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO the best PCE is obtained 26.92% (V<sub>oc</sub> = 0.99 V, J<sub>sc</sub> = 36.81 mA/cm<sup>2</sup>, FF = 73.80%) and device structure of FTO/WO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO gives the maximum efficiency 24.57% (V<sub>oc</sub> = 0.90 V, J<sub>sc</sub> = 36.73 mA/cm<sup>2</sup>, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO system provides better performance and better defect tolerance capacity. |
first_indexed | 2024-03-10T06:02:56Z |
format | Article |
id | doaj.art-b5b05d2c0cf04806a44e1b6d99271e0c |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-10T06:02:56Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-b5b05d2c0cf04806a44e1b6d99271e0c2023-11-22T20:45:36ZengMDPI AGEnergies1996-10732021-11-011421720010.3390/en14217200Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport LayersM. Mottakin0K. Sobayel1Dilip Sarkar2Hend Alkhammash3Sami Alharthi4Kuaanan Techato5Md. Shahiduzzaman6Nowshad Amin7Kamaruzzaman Sopian8Md. Akhtaruzzaman9Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, BangladeshSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaDepartment of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi ArabiaDepartment of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaEnvironmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, ThailandGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1292, JapanInstitute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang 43000, MalaysiaSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaSolar Energy Research Institute, The National University of Malaysia, Bangi 43600, MalaysiaAn ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in V<sub>oc</sub>, PCE decreases with temperature. Defect tolerance limit for IL1 is 10<sup>13</sup> cm<sup>−3</sup>, 10<sup>16</sup> cm<sup>−3</sup> and 10<sup>12</sup> cm<sup>−3</sup> for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 10<sup>14</sup> cm<sup>−3</sup>. With the proposed device structure FTO/PCBM/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO shows the maximum efficiency of 25.45% (V<sub>oc</sub> = 0.97 V, J<sub>sc</sub> = 35.19 mA/cm<sup>2</sup>, FF = 74.38%), for the structure FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO the best PCE is obtained 26.92% (V<sub>oc</sub> = 0.99 V, J<sub>sc</sub> = 36.81 mA/cm<sup>2</sup>, FF = 73.80%) and device structure of FTO/WO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO gives the maximum efficiency 24.57% (V<sub>oc</sub> = 0.90 V, J<sub>sc</sub> = 36.73 mA/cm<sup>2</sup>, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO system provides better performance and better defect tolerance capacity.https://www.mdpi.com/1996-1073/14/21/7200CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>CuOHTLWO<sub>3</sub>perovskiteSCAPS-1D |
spellingShingle | M. Mottakin K. Sobayel Dilip Sarkar Hend Alkhammash Sami Alharthi Kuaanan Techato Md. Shahiduzzaman Nowshad Amin Kamaruzzaman Sopian Md. Akhtaruzzaman Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers Energies CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> CuO HTL WO<sub>3</sub> perovskite SCAPS-1D |
title | Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers |
title_full | Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers |
title_fullStr | Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers |
title_full_unstemmed | Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers |
title_short | Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers |
title_sort | design and modelling of eco friendly ch sub 3 sub nh sub 3 sub sni sub 3 sub based perovskite solar cells with suitable transport layers |
topic | CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> CuO HTL WO<sub>3</sub> perovskite SCAPS-1D |
url | https://www.mdpi.com/1996-1073/14/21/7200 |
work_keys_str_mv | AT mmottakin designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT ksobayel designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT dilipsarkar designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT hendalkhammash designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT samialharthi designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT kuaanantechato designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT mdshahiduzzaman designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT nowshadamin designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT kamaruzzamansopian designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers AT mdakhtaruzzaman designandmodellingofecofriendlychsub3subnhsub3subsnisub3subbasedperovskitesolarcellswithsuitabletransportlayers |