A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy

Accurate measurement of angular positions on the sky requires a well-defined system of reference, something that in practice is realized by the International Celestial Reference Frame (ICRF) with observations of distant (typical redshift <inline-formula><tex-math notation="LaTeX"&...

Full description

Bibliographic Details
Main Authors: Jacob W. Kooi, Melissa Soriano, James Bowen, Zubair Abdulla, Lorene Samoska, Andy K. Fung, Raju Manthena, Daniel Hoppe, Hamid Javadi, Timothy Crawford, Darren J. Hayton, Inmaculada Malo-Gomez, Juan Daniel Gallego-Puyol, Ahmed Akgiray, Bekari Gabritchidze, Kieran A. Cleary, Christopher Jacobs, Joseph Lazio
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Journal of Microwaves
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10048701/
_version_ 1797853003508613120
author Jacob W. Kooi
Melissa Soriano
James Bowen
Zubair Abdulla
Lorene Samoska
Andy K. Fung
Raju Manthena
Daniel Hoppe
Hamid Javadi
Timothy Crawford
Darren J. Hayton
Inmaculada Malo-Gomez
Juan Daniel Gallego-Puyol
Ahmed Akgiray
Bekari Gabritchidze
Kieran A. Cleary
Christopher Jacobs
Joseph Lazio
author_facet Jacob W. Kooi
Melissa Soriano
James Bowen
Zubair Abdulla
Lorene Samoska
Andy K. Fung
Raju Manthena
Daniel Hoppe
Hamid Javadi
Timothy Crawford
Darren J. Hayton
Inmaculada Malo-Gomez
Juan Daniel Gallego-Puyol
Ahmed Akgiray
Bekari Gabritchidze
Kieran A. Cleary
Christopher Jacobs
Joseph Lazio
author_sort Jacob W. Kooi
collection DOAJ
description Accurate measurement of angular positions on the sky requires a well-defined system of reference, something that in practice is realized by the International Celestial Reference Frame (ICRF) with observations of distant (typical redshift <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>1) Active Galactic Nuclei (AGN). At such great distances a subset of these objects exhibit as little as 10<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>50 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>as/year observed parallax or proper motion, thus giving the frame excellent spatial and temporal stability. Until fairly recently the majority of AGN centered imaging was accomplished in the S (2.3 GHz) and X (8.4 GHz) radio frequency bands, however S-band observations for reasons such as sensitivity &#x201C;plateauing&#x201D;, increased source structure (jets), and radio frequency interference (RFI) have become less productive. Following spacecraft telemetry moves to higher frequencies and a desire to strengthen JPL&#x0027;s leadership in defining the next-generation of celestial reference frames has motivated the development of a &#x201C;Quad-band&#x201D; prototype receiver that operates in X, Ku, K, and Ka band in both right hand (RCP) and left hand (LCP) circular polarization. The goal of this receiver is to achieve less than a 20 &#x0025; increase in noise over the Jansky Very Large Array (JVLA, NRAO) performance specification, which in such a wide bandwidth represents a revolutionary capability. To evaluate the various technical developments of the 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz receiver the feedhorn optical beam was designed to interface to the US based Very Long Baseline Array (VLBA). The receiver&#x0027;s intermediate frequency (IF) spans 4 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>8 GHz, giving rise to up to eight 4 GHz IF channels for a fully populated instrument. This paper outlines the technical development of a 2<inline-formula><tex-math notation="LaTeX">$^{1}$</tex-math></inline-formula>/<inline-formula><tex-math notation="LaTeX">$_{2}$</tex-math></inline-formula> octave wide (8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz) X-Ka band prototype receiver, fulfilling a need for super broadband technology within the VLBI network. An important additional benefit of the wideband receiver approach is its simplicity and low cost of operation.
first_indexed 2024-04-09T19:43:32Z
format Article
id doaj.art-b5ca83678ec34f78ae86ee483e60b504
institution Directory Open Access Journal
issn 2692-8388
language English
last_indexed 2024-04-09T19:43:32Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Journal of Microwaves
spelling doaj.art-b5ca83678ec34f78ae86ee483e60b5042023-04-03T23:00:51ZengIEEEIEEE Journal of Microwaves2692-83882023-01-013257058610.1109/JMW.2023.323769310048701A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio AstronomyJacob W. Kooi0https://orcid.org/0000-0002-6610-0384Melissa Soriano1James Bowen2Zubair Abdulla3Lorene Samoska4Andy K. Fung5https://orcid.org/0000-0003-4849-759XRaju Manthena6Daniel Hoppe7Hamid Javadi8Timothy Crawford9https://orcid.org/0000-0002-2893-2825Darren J. Hayton10Inmaculada Malo-Gomez11https://orcid.org/0000-0001-8354-1854Juan Daniel Gallego-Puyol12https://orcid.org/0000-0002-7148-5127Ahmed Akgiray13https://orcid.org/0000-0002-7373-4158Bekari Gabritchidze14https://orcid.org/0000-0001-6392-0523Kieran A. Cleary15Christopher Jacobs16Joseph Lazio17Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAOxford Quantum Circuits, Oxford, U.K.Yebes Observatory, Yebes, Guadalajara, SpainYebes Observatory, Yebes, Guadalajara, SpainOzyegin University, Istanbul, TurkeyCalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAAccurate measurement of angular positions on the sky requires a well-defined system of reference, something that in practice is realized by the International Celestial Reference Frame (ICRF) with observations of distant (typical redshift <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>1) Active Galactic Nuclei (AGN). At such great distances a subset of these objects exhibit as little as 10<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>50 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>as/year observed parallax or proper motion, thus giving the frame excellent spatial and temporal stability. Until fairly recently the majority of AGN centered imaging was accomplished in the S (2.3 GHz) and X (8.4 GHz) radio frequency bands, however S-band observations for reasons such as sensitivity &#x201C;plateauing&#x201D;, increased source structure (jets), and radio frequency interference (RFI) have become less productive. Following spacecraft telemetry moves to higher frequencies and a desire to strengthen JPL&#x0027;s leadership in defining the next-generation of celestial reference frames has motivated the development of a &#x201C;Quad-band&#x201D; prototype receiver that operates in X, Ku, K, and Ka band in both right hand (RCP) and left hand (LCP) circular polarization. The goal of this receiver is to achieve less than a 20 &#x0025; increase in noise over the Jansky Very Large Array (JVLA, NRAO) performance specification, which in such a wide bandwidth represents a revolutionary capability. To evaluate the various technical developments of the 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz receiver the feedhorn optical beam was designed to interface to the US based Very Long Baseline Array (VLBA). The receiver&#x0027;s intermediate frequency (IF) spans 4 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>8 GHz, giving rise to up to eight 4 GHz IF channels for a fully populated instrument. This paper outlines the technical development of a 2<inline-formula><tex-math notation="LaTeX">$^{1}$</tex-math></inline-formula>/<inline-formula><tex-math notation="LaTeX">$_{2}$</tex-math></inline-formula> octave wide (8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz) X-Ka band prototype receiver, fulfilling a need for super broadband technology within the VLBI network. An important additional benefit of the wideband receiver approach is its simplicity and low cost of operation.https://ieeexplore.ieee.org/document/10048701/Astrometrycelestial reference framesdual polarizationequalizerHEMTintermediate frequency (IF)
spellingShingle Jacob W. Kooi
Melissa Soriano
James Bowen
Zubair Abdulla
Lorene Samoska
Andy K. Fung
Raju Manthena
Daniel Hoppe
Hamid Javadi
Timothy Crawford
Darren J. Hayton
Inmaculada Malo-Gomez
Juan Daniel Gallego-Puyol
Ahmed Akgiray
Bekari Gabritchidze
Kieran A. Cleary
Christopher Jacobs
Joseph Lazio
A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
IEEE Journal of Microwaves
Astrometry
celestial reference frames
dual polarization
equalizer
HEMT
intermediate frequency (IF)
title A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
title_full A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
title_fullStr A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
title_full_unstemmed A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
title_short A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
title_sort multioctave 8 ghz inline formula tex math notation latex tex math inline formula 40 ghz receiver for radio astronomy
topic Astrometry
celestial reference frames
dual polarization
equalizer
HEMT
intermediate frequency (IF)
url https://ieeexplore.ieee.org/document/10048701/
work_keys_str_mv AT jacobwkooi amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT melissasoriano amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT jamesbowen amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT zubairabdulla amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT lorenesamoska amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT andykfung amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT rajumanthena amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT danielhoppe amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT hamidjavadi amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT timothycrawford amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT darrenjhayton amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT inmaculadamalogomez amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT juandanielgallegopuyol amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT ahmedakgiray amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT bekarigabritchidze amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT kieranacleary amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT christopherjacobs amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT josephlazio amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT jacobwkooi multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT melissasoriano multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT jamesbowen multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT zubairabdulla multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT lorenesamoska multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT andykfung multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT rajumanthena multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT danielhoppe multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT hamidjavadi multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT timothycrawford multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT darrenjhayton multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT inmaculadamalogomez multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT juandanielgallegopuyol multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT ahmedakgiray multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT bekarigabritchidze multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT kieranacleary multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT christopherjacobs multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy
AT josephlazio multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy