A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
Accurate measurement of angular positions on the sky requires a well-defined system of reference, something that in practice is realized by the International Celestial Reference Frame (ICRF) with observations of distant (typical redshift <inline-formula><tex-math notation="LaTeX"&...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Journal of Microwaves |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10048701/ |
_version_ | 1797853003508613120 |
---|---|
author | Jacob W. Kooi Melissa Soriano James Bowen Zubair Abdulla Lorene Samoska Andy K. Fung Raju Manthena Daniel Hoppe Hamid Javadi Timothy Crawford Darren J. Hayton Inmaculada Malo-Gomez Juan Daniel Gallego-Puyol Ahmed Akgiray Bekari Gabritchidze Kieran A. Cleary Christopher Jacobs Joseph Lazio |
author_facet | Jacob W. Kooi Melissa Soriano James Bowen Zubair Abdulla Lorene Samoska Andy K. Fung Raju Manthena Daniel Hoppe Hamid Javadi Timothy Crawford Darren J. Hayton Inmaculada Malo-Gomez Juan Daniel Gallego-Puyol Ahmed Akgiray Bekari Gabritchidze Kieran A. Cleary Christopher Jacobs Joseph Lazio |
author_sort | Jacob W. Kooi |
collection | DOAJ |
description | Accurate measurement of angular positions on the sky requires a well-defined system of reference, something that in practice is realized by the International Celestial Reference Frame (ICRF) with observations of distant (typical redshift <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>1) Active Galactic Nuclei (AGN). At such great distances a subset of these objects exhibit as little as 10<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>50 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>as/year observed parallax or proper motion, thus giving the frame excellent spatial and temporal stability. Until fairly recently the majority of AGN centered imaging was accomplished in the S (2.3 GHz) and X (8.4 GHz) radio frequency bands, however S-band observations for reasons such as sensitivity “plateauing”, increased source structure (jets), and radio frequency interference (RFI) have become less productive. Following spacecraft telemetry moves to higher frequencies and a desire to strengthen JPL's leadership in defining the next-generation of celestial reference frames has motivated the development of a “Quad-band” prototype receiver that operates in X, Ku, K, and Ka band in both right hand (RCP) and left hand (LCP) circular polarization. The goal of this receiver is to achieve less than a 20 % increase in noise over the Jansky Very Large Array (JVLA, NRAO) performance specification, which in such a wide bandwidth represents a revolutionary capability. To evaluate the various technical developments of the 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz receiver the feedhorn optical beam was designed to interface to the US based Very Long Baseline Array (VLBA). The receiver's intermediate frequency (IF) spans 4 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>8 GHz, giving rise to up to eight 4 GHz IF channels for a fully populated instrument. This paper outlines the technical development of a 2<inline-formula><tex-math notation="LaTeX">$^{1}$</tex-math></inline-formula>/<inline-formula><tex-math notation="LaTeX">$_{2}$</tex-math></inline-formula> octave wide (8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz) X-Ka band prototype receiver, fulfilling a need for super broadband technology within the VLBI network. An important additional benefit of the wideband receiver approach is its simplicity and low cost of operation. |
first_indexed | 2024-04-09T19:43:32Z |
format | Article |
id | doaj.art-b5ca83678ec34f78ae86ee483e60b504 |
institution | Directory Open Access Journal |
issn | 2692-8388 |
language | English |
last_indexed | 2024-04-09T19:43:32Z |
publishDate | 2023-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Journal of Microwaves |
spelling | doaj.art-b5ca83678ec34f78ae86ee483e60b5042023-04-03T23:00:51ZengIEEEIEEE Journal of Microwaves2692-83882023-01-013257058610.1109/JMW.2023.323769310048701A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio AstronomyJacob W. Kooi0https://orcid.org/0000-0002-6610-0384Melissa Soriano1James Bowen2Zubair Abdulla3Lorene Samoska4Andy K. Fung5https://orcid.org/0000-0003-4849-759XRaju Manthena6Daniel Hoppe7Hamid Javadi8Timothy Crawford9https://orcid.org/0000-0002-2893-2825Darren J. Hayton10Inmaculada Malo-Gomez11https://orcid.org/0000-0001-8354-1854Juan Daniel Gallego-Puyol12https://orcid.org/0000-0002-7148-5127Ahmed Akgiray13https://orcid.org/0000-0002-7373-4158Bekari Gabritchidze14https://orcid.org/0000-0001-6392-0523Kieran A. Cleary15Christopher Jacobs16Joseph Lazio17Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAOxford Quantum Circuits, Oxford, U.K.Yebes Observatory, Yebes, Guadalajara, SpainYebes Observatory, Yebes, Guadalajara, SpainOzyegin University, Istanbul, TurkeyCalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAAccurate measurement of angular positions on the sky requires a well-defined system of reference, something that in practice is realized by the International Celestial Reference Frame (ICRF) with observations of distant (typical redshift <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>1) Active Galactic Nuclei (AGN). At such great distances a subset of these objects exhibit as little as 10<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>50 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>as/year observed parallax or proper motion, thus giving the frame excellent spatial and temporal stability. Until fairly recently the majority of AGN centered imaging was accomplished in the S (2.3 GHz) and X (8.4 GHz) radio frequency bands, however S-band observations for reasons such as sensitivity “plateauing”, increased source structure (jets), and radio frequency interference (RFI) have become less productive. Following spacecraft telemetry moves to higher frequencies and a desire to strengthen JPL's leadership in defining the next-generation of celestial reference frames has motivated the development of a “Quad-band” prototype receiver that operates in X, Ku, K, and Ka band in both right hand (RCP) and left hand (LCP) circular polarization. The goal of this receiver is to achieve less than a 20 % increase in noise over the Jansky Very Large Array (JVLA, NRAO) performance specification, which in such a wide bandwidth represents a revolutionary capability. To evaluate the various technical developments of the 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz receiver the feedhorn optical beam was designed to interface to the US based Very Long Baseline Array (VLBA). The receiver's intermediate frequency (IF) spans 4 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>8 GHz, giving rise to up to eight 4 GHz IF channels for a fully populated instrument. This paper outlines the technical development of a 2<inline-formula><tex-math notation="LaTeX">$^{1}$</tex-math></inline-formula>/<inline-formula><tex-math notation="LaTeX">$_{2}$</tex-math></inline-formula> octave wide (8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz) X-Ka band prototype receiver, fulfilling a need for super broadband technology within the VLBI network. An important additional benefit of the wideband receiver approach is its simplicity and low cost of operation.https://ieeexplore.ieee.org/document/10048701/Astrometrycelestial reference framesdual polarizationequalizerHEMTintermediate frequency (IF) |
spellingShingle | Jacob W. Kooi Melissa Soriano James Bowen Zubair Abdulla Lorene Samoska Andy K. Fung Raju Manthena Daniel Hoppe Hamid Javadi Timothy Crawford Darren J. Hayton Inmaculada Malo-Gomez Juan Daniel Gallego-Puyol Ahmed Akgiray Bekari Gabritchidze Kieran A. Cleary Christopher Jacobs Joseph Lazio A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy IEEE Journal of Microwaves Astrometry celestial reference frames dual polarization equalizer HEMT intermediate frequency (IF) |
title | A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy |
title_full | A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy |
title_fullStr | A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy |
title_full_unstemmed | A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy |
title_short | A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy |
title_sort | multioctave 8 ghz inline formula tex math notation latex tex math inline formula 40 ghz receiver for radio astronomy |
topic | Astrometry celestial reference frames dual polarization equalizer HEMT intermediate frequency (IF) |
url | https://ieeexplore.ieee.org/document/10048701/ |
work_keys_str_mv | AT jacobwkooi amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT melissasoriano amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT jamesbowen amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT zubairabdulla amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT lorenesamoska amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT andykfung amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT rajumanthena amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT danielhoppe amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT hamidjavadi amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT timothycrawford amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT darrenjhayton amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT inmaculadamalogomez amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT juandanielgallegopuyol amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT ahmedakgiray amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT bekarigabritchidze amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT kieranacleary amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT christopherjacobs amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT josephlazio amultioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT jacobwkooi multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT melissasoriano multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT jamesbowen multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT zubairabdulla multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT lorenesamoska multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT andykfung multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT rajumanthena multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT danielhoppe multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT hamidjavadi multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT timothycrawford multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT darrenjhayton multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT inmaculadamalogomez multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT juandanielgallegopuyol multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT ahmedakgiray multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT bekarigabritchidze multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT kieranacleary multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT christopherjacobs multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy AT josephlazio multioctave8ghzinlineformulatexmathnotationlatextexmathinlineformula40ghzreceiverforradioastronomy |