Method for Decontamination of Toxic Aluminochrome Catalyst Sludge by Reduction of Hexavalent Chromium

The article is devoted to the neutralization of the harmful effects of aluminochrome catalyst sludge. Catalyst sludge is a waste product from petrochemical production and poses a serious threat to the environment and humans because of the toxic hexavalent chromium it contains. The emissions of Russi...

Full description

Bibliographic Details
Main Authors: Igor Pyagay, Olga Zubkova, Margarita Zubakina, Viktor Sizyakov
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Inorganics
Subjects:
Online Access:https://www.mdpi.com/2304-6740/11/7/284
Description
Summary:The article is devoted to the neutralization of the harmful effects of aluminochrome catalyst sludge. Catalyst sludge is a waste product from petrochemical production and poses a serious threat to the environment and humans because of the toxic hexavalent chromium it contains. The emissions of Russian petrochemical enterprises’ alumochrome sludge is 10,000–12,000 tons per year. In this paper, research related to the possibility of reducing the harmful effects of sludge by converting hexavalent chromium to a less dangerous trivalent state is presented. The reduction of hexavalent chromium was carried out with different reagents: Na<sub>2</sub>SO<sub>3</sub>, FeSO<sub>4</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, and Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>. Then, a comparative analysis was carried out, and sodium metabisulfite was chosen as the most preferred reagent. The peculiarity of the reducing method was carrying out the reaction in a neutral medium, pH = 7.0. The reduction was carried out in the temperature range of 60–85 °C and under standard conditions. The maximum recovery efficiency of chromium from the catalyst sludge (100%) was achieved at 85 °C and 10 min. This method did not involve the use of concentrated sulfuric acid, as in a number of common techniques, or additional reagents for the precipitation of chromium in the form of hydroxide.
ISSN:2304-6740