The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in <it>Trichoderma reesei</it>

<p>Abstract</p> <p>Background</p> <p>In the biotechnological workhorse <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Compo...

Full description

Bibliographic Details
Main Authors: Tisch Doris, Kubicek Christian P, Schmoll Monika
Format: Article
Language:English
Published: BMC 2011-12-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/12/613
Description
Summary:<p>Abstract</p> <p>Background</p> <p>In the biotechnological workhorse <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression.</p> <p>Results</p> <p>As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the <it>T. reesei </it>class I phosducin-like protein gene <it>phlp1 </it>and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in <it>T. reesei</it>. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.</p> <p>Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δ<it>phlp1</it>. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δ<it>phlp1</it>. The lack of GNB1 drastically diminished ascospore discharge in <it>T. reesei</it>.</p> <p>Conclusions</p> <p>The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of <it>T. reesei</it>, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.</p>
ISSN:1471-2164