Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion

One major advantage of additive manufacturing is the high freedom of design, which supports the fabrication of complex structures. However, geometrical features such as combined massive volumes and cellular structures in such parts can lead to an uneven heat distribution during processing, resulting...

Full description

Bibliographic Details
Main Authors: Florian Nahr, Michael Rasch, Christian Burkhardt, Jakob Renner, Benjamin Baumgärtner, Tino Hausotte, Carolin Körner, Paul Steinmann, Julia Mergheim, Michael Schmidt, Matthias Markl
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Journal of Manufacturing and Materials Processing
Subjects:
Online Access:https://www.mdpi.com/2504-4494/7/3/82
_version_ 1797594018073280512
author Florian Nahr
Michael Rasch
Christian Burkhardt
Jakob Renner
Benjamin Baumgärtner
Tino Hausotte
Carolin Körner
Paul Steinmann
Julia Mergheim
Michael Schmidt
Matthias Markl
author_facet Florian Nahr
Michael Rasch
Christian Burkhardt
Jakob Renner
Benjamin Baumgärtner
Tino Hausotte
Carolin Körner
Paul Steinmann
Julia Mergheim
Michael Schmidt
Matthias Markl
author_sort Florian Nahr
collection DOAJ
description One major advantage of additive manufacturing is the high freedom of design, which supports the fabrication of complex structures. However, geometrical features such as combined massive volumes and cellular structures in such parts can lead to an uneven heat distribution during processing, resulting in different material properties throughout the part. In this study, we demonstrate these effects, using a complex structure consisting of three conic shapes with narrow cylinders in between hindering heat flux. We manufacture the parts via powder bed fusion of Ti6Al4V by applying a laser beam (PBF-LB/M) as well as an electron beam (PBF-EB). We investigate the impact of the different thermal regimes on the part density, microstructure and mechanical properties aided by finite element simulations as well as by thermography and X-ray computed tomography measurements. Both simulations and thermography show an increase in inter-layer temperature with increasing part radius, subsequently leading to heat accumulation along the build direction. While the geometry and thermal history have a minor influence on the relative density of the parts, the microstructure is greatly affected by the thermal history in PBF-LB/M. The acicular martensitic structure in the narrow parts is decomposed into a mix of tempered lath-like martensite and an ultrafine <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> microstructure with increasing part radius. The EBM part exhibits a lamellar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> microstructure for both the cylindric and conic structures. The different microstructures directly influence the hardness of the parts. For the PBF-LB part, the hardness ranges between 400 HV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula> in the narrow sections and a maximum hardness of 450 HV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula> in the broader sections, while the PBF-EB part exhibits hardness values between 280 and 380 HV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula>.
first_indexed 2024-03-11T02:17:39Z
format Article
id doaj.art-b5eaa3e0edb9492b8b9c691acc51c324
institution Directory Open Access Journal
issn 2504-4494
language English
last_indexed 2024-03-11T02:17:39Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Journal of Manufacturing and Materials Processing
spelling doaj.art-b5eaa3e0edb9492b8b9c691acc51c3242023-11-18T11:05:16ZengMDPI AGJournal of Manufacturing and Materials Processing2504-44942023-04-01738210.3390/jmmp7030082Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed FusionFlorian Nahr0Michael Rasch1Christian Burkhardt2Jakob Renner3Benjamin Baumgärtner4Tino Hausotte5Carolin Körner6Paul Steinmann7Julia Mergheim8Michael Schmidt9Matthias Markl10Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Straße 3-5, 91052 Erlangen, GermanyInstitute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Straße 3-5, 91052 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyInstitute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Straße 3-5, 91052 Erlangen, GermanyCollaborative Research Center 814–Additive Manufacturing (CRC 814), Am Weichselgarten 10, 91058 Erlangen, GermanyOne major advantage of additive manufacturing is the high freedom of design, which supports the fabrication of complex structures. However, geometrical features such as combined massive volumes and cellular structures in such parts can lead to an uneven heat distribution during processing, resulting in different material properties throughout the part. In this study, we demonstrate these effects, using a complex structure consisting of three conic shapes with narrow cylinders in between hindering heat flux. We manufacture the parts via powder bed fusion of Ti6Al4V by applying a laser beam (PBF-LB/M) as well as an electron beam (PBF-EB). We investigate the impact of the different thermal regimes on the part density, microstructure and mechanical properties aided by finite element simulations as well as by thermography and X-ray computed tomography measurements. Both simulations and thermography show an increase in inter-layer temperature with increasing part radius, subsequently leading to heat accumulation along the build direction. While the geometry and thermal history have a minor influence on the relative density of the parts, the microstructure is greatly affected by the thermal history in PBF-LB/M. The acicular martensitic structure in the narrow parts is decomposed into a mix of tempered lath-like martensite and an ultrafine <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> microstructure with increasing part radius. The EBM part exhibits a lamellar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> microstructure for both the cylindric and conic structures. The different microstructures directly influence the hardness of the parts. For the PBF-LB part, the hardness ranges between 400 HV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula> in the narrow sections and a maximum hardness of 450 HV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula> in the broader sections, while the PBF-EB part exhibits hardness values between 280 and 380 HV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula>.https://www.mdpi.com/2504-4494/7/3/82PBF-LB/MPBF-EBTi6Al4Vsimulationthermography
spellingShingle Florian Nahr
Michael Rasch
Christian Burkhardt
Jakob Renner
Benjamin Baumgärtner
Tino Hausotte
Carolin Körner
Paul Steinmann
Julia Mergheim
Michael Schmidt
Matthias Markl
Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion
Journal of Manufacturing and Materials Processing
PBF-LB/M
PBF-EB
Ti6Al4V
simulation
thermography
title Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion
title_full Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion
title_fullStr Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion
title_full_unstemmed Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion
title_short Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion
title_sort geometrical influence on material properties for ti6al4v parts in powder bed fusion
topic PBF-LB/M
PBF-EB
Ti6Al4V
simulation
thermography
url https://www.mdpi.com/2504-4494/7/3/82
work_keys_str_mv AT floriannahr geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT michaelrasch geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT christianburkhardt geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT jakobrenner geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT benjaminbaumgartner geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT tinohausotte geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT carolinkorner geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT paulsteinmann geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT juliamergheim geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT michaelschmidt geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion
AT matthiasmarkl geometricalinfluenceonmaterialpropertiesforti6al4vpartsinpowderbedfusion