Lateral-Concentration Inhomogeneities in Flows of Suspensions of Rod-like Particles: The Approach of the Theory of Anisotropic Micropolar Fluid
To tackle suspensions of particles of any shape, the thermodynamics of a Cosserat continuum are developed by the method suggested by Landau and Khalatnikov for the mathematical description of the super-fluidity of liquid 2He. Such an approach allows us to take into account the rotation of particles...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/23/4740 |
Summary: | To tackle suspensions of particles of any shape, the thermodynamics of a Cosserat continuum are developed by the method suggested by Landau and Khalatnikov for the mathematical description of the super-fluidity of liquid 2He. Such an approach allows us to take into account the rotation of particles and their form. The flows of suspensions of neutrally buoyant rod-like particles are considered in detail. These suspensions include linear polymer solutions, FD-virus and worm-like micelles. The anisotropy of the suspensions is determined through the inclusion of the micro-inertia tensor in the rheological constitutive equations. The theory predicts gradient banding, temporal volatility of apparent viscosity and hysteresis of the flux-pressure curve. The transition from the isotropic phase to the nematic phase is also captured. Our mathematical model predicts the formation of flock-like inhomogeneities of concentration jointly with the hindrance effect. |
---|---|
ISSN: | 2227-7390 |