Summary: | Large scale and rapid urbanization processes call for a better quality of urban planning to support human well-being. While compact cities aim to reduce land consumption, densification puts pressure on the remaining green areas, influencing ecosystem services provision and ultimately the life quality of the growing urban population. Supply of and demand for urban ecosystem services differ however greatly across the globe. In this study, we derive a set of urban typologies and their related ecosystem services bundles in both a temperate and a tropical city. We show that the supply of urban ecosystem services does not increase linearly with green area coverage, but is highly dependent on the urban form. While the surface sealed by infrastructures and the buildings themselves play a key role in influencing ecosystem services provision, we observe that the share of trees is particularly important for supporting regulating ecosystem services in built up neighborhoods. With a similar average surface-to-volume ratio, open midrise neighborhoods in Singapore provide more water flow regulation and air pollution control services than the same urban typology in Zurich. Microclimate regulation, in contrast, does not seem to be dependent on the context, but more on the amount of built up surface. Interestingly, we observe that open midrise neighborhoods synergistically support the supply of many regulating services in both case study areas, including microclimate regulation, water flow regulation and air pollution control. Large water and forest patches are unquestionably essential in both Singapore and Zurich to support bundles of ecosystem services, particularly also for recreational activities. Using open data, the approach can be transferred to other cities and support decision makers in their efforts to plan the sustainable development of cities across the world.
|