Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View

In the present paper, we study the geometry of infinitesimal conformal, affine, projective, and harmonic transformations of complete Riemannian manifolds using the concepts of geometric dynamics and the methods of the modern version of the Bochner technique.

Bibliographic Details
Main Authors: Lenka Rýparová, Irena Hinterleitner, Sergey Stepanov, Irina Tsyganok
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/5/1114
_version_ 1797614904618778624
author Lenka Rýparová
Irena Hinterleitner
Sergey Stepanov
Irina Tsyganok
author_facet Lenka Rýparová
Irena Hinterleitner
Sergey Stepanov
Irina Tsyganok
author_sort Lenka Rýparová
collection DOAJ
description In the present paper, we study the geometry of infinitesimal conformal, affine, projective, and harmonic transformations of complete Riemannian manifolds using the concepts of geometric dynamics and the methods of the modern version of the Bochner technique.
first_indexed 2024-03-11T07:18:49Z
format Article
id doaj.art-b5fc6f4d714d4f6080f0e047c325ca6e
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T07:18:49Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b5fc6f4d714d4f6080f0e047c325ca6e2023-11-17T08:08:25ZengMDPI AGMathematics2227-73902023-02-01115111410.3390/math11051114Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of ViewLenka Rýparová0Irena Hinterleitner1Sergey Stepanov2Irina Tsyganok3Department of Algebra and Geometry, Palacký University Olomouc, 77146 Olomouc, Czech RepublicInstitute of Mathematics and Descriptive Geometry, Brno University of Technology, 60200 Brno, Czech RepublicDepartment of Mathematics, Financial University, 49 Lenigradsky Prospect, 125993 Moscow, RussiaDepartment of Mathematics, Financial University, 49 Lenigradsky Prospect, 125993 Moscow, RussiaIn the present paper, we study the geometry of infinitesimal conformal, affine, projective, and harmonic transformations of complete Riemannian manifolds using the concepts of geometric dynamics and the methods of the modern version of the Bochner technique.https://www.mdpi.com/2227-7390/11/5/1114complete Riemannian manifoldgeometric dynamical systemsLiouville-type theoremsinfinitesimal transformations
spellingShingle Lenka Rýparová
Irena Hinterleitner
Sergey Stepanov
Irina Tsyganok
Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View
Mathematics
complete Riemannian manifold
geometric dynamical systems
Liouville-type theorems
infinitesimal transformations
title Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View
title_full Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View
title_fullStr Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View
title_full_unstemmed Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View
title_short Infinitesimal Transformations of Riemannian Manifolds—The Geometric Dynamics Point of View
title_sort infinitesimal transformations of riemannian manifolds the geometric dynamics point of view
topic complete Riemannian manifold
geometric dynamical systems
Liouville-type theorems
infinitesimal transformations
url https://www.mdpi.com/2227-7390/11/5/1114
work_keys_str_mv AT lenkaryparova infinitesimaltransformationsofriemannianmanifoldsthegeometricdynamicspointofview
AT irenahinterleitner infinitesimaltransformationsofriemannianmanifoldsthegeometricdynamicspointofview
AT sergeystepanov infinitesimaltransformationsofriemannianmanifoldsthegeometricdynamicspointofview
AT irinatsyganok infinitesimaltransformationsofriemannianmanifoldsthegeometricdynamicspointofview