Adaptation Analysis in IMERG Precipitation Estimation for the Dongting Lake Basin, China

Precipitation data from ground-based observatories in the Dongting Lake basin are often missing, resulting in large errors in surface precipitation data obtained by interpolation, which affects the accuracy of hydro-meteorological studies. Integrated Multisatellite Retrievals for Global Precipitatio...

Full description

Bibliographic Details
Main Authors: Shanshan Li, Changbo Jiang, Yuan Ma, Yuannan Long, Ruixuan Wu, Qingxiong Zhu, Donglin Li, Chuannan Li, Zihao Ning
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/10/1735
Description
Summary:Precipitation data from ground-based observatories in the Dongting Lake basin are often missing, resulting in large errors in surface precipitation data obtained by interpolation, which affects the accuracy of hydro-meteorological studies. Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) is the main high-resolution precipitation product, which is available to supplement measured missing data. To evaluate the applicability of this product in the Dongting Lake basin at multiple spatial and temporal scales, this paper analyzes daily, monthly, seasonal, annual, and extreme precipitation events of the three latest IMERG precipitation products (IPPs) (IMERG-F, IMERG-E, and IMERG-L) using eight statistical evaluation metrics. We find that the spatial and temporal performance of IMERG precipitation products varies over different time scales and topographic conditions. However, all three metrics (CC, RMSE, and RB) of the IMERG-F precipitation products outperform the IMERG-E and IMERG-L precipitation products for the same period. In the comparison of IMERG and TRMM (Tropical Rainfall Measuring Mission) precipitation products on monthly and seasonal scales, IMERG-F performed the best. IPPs can capture precipitation more accurately on seasonal scales and perform better in winter, indicating good detection of trace precipitation. Both high and low altitudes are not favorable for the satellite detection of extreme precipitation in both general and extreme precipitation events. Overall, the accuracy of IMERG-F with correction delay is slightly better than that of IMERG-E and IMERG-L without correction under near-real-time conditions, which is applicable in the Dongting Lake basin. However, the correction process also exacerbates overestimation of the precipitation extent.
ISSN:2073-4433