Summary: | With the increasing installed capacity of photovoltaic (PV) power generation, it has become a significant challenge to detect abnormalities and faults of PV modules in a timely manner. Considering that all the fault information of the PV module is contained in the current-voltage (<i>I</i>-<i>V</i>) curve, this pioneering study takes the <i>I</i>-<i>V</i> curve as the input and proposes a PV-fault identification method based on improved deep residual shrinkage networks (DRSN). This method can not only identify single faults (e.g., short-circuit, partial-shading, and abnormal aging), but also effectively identify the simultaneous existence of hybrid faults. Moreover, it can achieve end-to-end fault diagnosis. The diagnostic accuracy of the proposed method on the measured data reaches 97.73%, is better than the convolutional neural network (CNN), the support vector machine (SVM), the deep residual network (ResNet), and the stage-wise additive modeling using multi-class exponential loss function based on the classification and regression tree (SAMME-CART). In addition, the possibility of the aforementioned method running on the Raspberry Pi has been verified in this study, which is of great significance for realizing the edge diagnosis of PV fault.
|