A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring

For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges fro...

Full description

Bibliographic Details
Main Authors: Jiandong Chen, Tianying Chang, Qunjian Fu, Jinpeng Lang, Wenzhi Gao, Zhongmin Wang, Miao Yu, Yanbo Zhang, Hong-Liang Cui
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/17/1/47
Description
Summary:For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad / Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng / Hz , and the dynamic range is above 116 dB.
ISSN:1424-8220