Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses
Let <i>b</i> and <i>c</i> be two elements in a semigroup <i>S</i>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/16/2948 |
_version_ | 1827617807356919808 |
---|---|
author | Guiqi Shi Jianlong Chen |
author_facet | Guiqi Shi Jianlong Chen |
author_sort | Guiqi Shi |
collection | DOAJ |
description | Let <i>b</i> and <i>c</i> be two elements in a semigroup <i>S</i>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-inverse is an important outer inverse because it unifies many common generalized inverses. This paper is devoted to presenting some symmetric properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-inverses and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-inverses. We first find that <i>S</i> contains a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible element if and only if it contains a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible element. Then, for four given elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi></mrow></semantics></math></inline-formula> in <i>S</i>, we prove that <i>a</i> is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible and <i>d</i> is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>b</mi><mi>d</mi></mrow></semantics></math></inline-formula> is invertible along <i>c</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>c</mi><mi>a</mi></mrow></semantics></math></inline-formula> is invertible along <i>b</i>. Inspired by this result, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertibility is characterized by one-sided invertible elements. Furthermore, we show that <i>a</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible and <i>d</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible if and only if <i>c</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible and <i>b</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>d</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible. |
first_indexed | 2024-03-09T09:53:10Z |
format | Article |
id | doaj.art-b61f4587763e484a928ff0633a763967 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-09T09:53:10Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-b61f4587763e484a928ff0633a7639672023-12-01T23:57:47ZengMDPI AGMathematics2227-73902022-08-011016294810.3390/math10162948Symmetric Properties of (<i>b</i>,<i>c</i>)-InversesGuiqi Shi0Jianlong Chen1School of Mathematics, Southeast University, Nanjing 210096, ChinaSchool of Mathematics, Southeast University, Nanjing 210096, ChinaLet <i>b</i> and <i>c</i> be two elements in a semigroup <i>S</i>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-inverse is an important outer inverse because it unifies many common generalized inverses. This paper is devoted to presenting some symmetric properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-inverses and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-inverses. We first find that <i>S</i> contains a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible element if and only if it contains a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible element. Then, for four given elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi></mrow></semantics></math></inline-formula> in <i>S</i>, we prove that <i>a</i> is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible and <i>d</i> is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>b</mi><mi>d</mi></mrow></semantics></math></inline-formula> is invertible along <i>c</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>c</mi><mi>a</mi></mrow></semantics></math></inline-formula> is invertible along <i>b</i>. Inspired by this result, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertibility is characterized by one-sided invertible elements. Furthermore, we show that <i>a</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible and <i>d</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible if and only if <i>c</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible and <i>b</i> is inner <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>d</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula>-invertible.https://www.mdpi.com/2227-7390/10/16/2948generalized inverse<i>(b,c)</i>-inverseinner <i>(b,c)</i>-inverseouter inverse |
spellingShingle | Guiqi Shi Jianlong Chen Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses Mathematics generalized inverse <i>(b,c)</i>-inverse inner <i>(b,c)</i>-inverse outer inverse |
title | Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses |
title_full | Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses |
title_fullStr | Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses |
title_full_unstemmed | Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses |
title_short | Symmetric Properties of (<i>b</i>,<i>c</i>)-Inverses |
title_sort | symmetric properties of i b i i c i inverses |
topic | generalized inverse <i>(b,c)</i>-inverse inner <i>(b,c)</i>-inverse outer inverse |
url | https://www.mdpi.com/2227-7390/10/16/2948 |
work_keys_str_mv | AT guiqishi symmetricpropertiesofibiiciinverses AT jianlongchen symmetricpropertiesofibiiciinverses |