A Review of in vivo Toxicity of Quantum Dots in Animal Models
Xiaotan Lin,1,2 Tingting Chen1 1School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China; 2Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of ChinaCorrespondence: Tingting...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2023-12-01
|
Series: | International Journal of Nanomedicine |
Subjects: | |
Online Access: | https://www.dovepress.com/a-review-of-in-vivo-toxicity-of-quantum-dots-in-animal-models-peer-reviewed-fulltext-article-IJN |
_version_ | 1797368055020388352 |
---|---|
author | Lin X Chen T |
author_facet | Lin X Chen T |
author_sort | Lin X |
collection | DOAJ |
description | Xiaotan Lin,1,2 Tingting Chen1 1School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China; 2Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of ChinaCorrespondence: Tingting Chen, School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China, Email jkf_ctt@163.comAbstract: Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic. Keywords: quantum dots, nanotoxicology, nanoparticle, toxicity, cytotoxic |
first_indexed | 2024-03-08T17:25:57Z |
format | Article |
id | doaj.art-b626908fa312444e99a2c294a313d749 |
institution | Directory Open Access Journal |
issn | 1178-2013 |
language | English |
last_indexed | 2024-03-08T17:25:57Z |
publishDate | 2023-12-01 |
publisher | Dove Medical Press |
record_format | Article |
series | International Journal of Nanomedicine |
spelling | doaj.art-b626908fa312444e99a2c294a313d7492024-01-02T19:17:46ZengDove Medical PressInternational Journal of Nanomedicine1178-20132023-12-01Volume 188143816889395A Review of in vivo Toxicity of Quantum Dots in Animal ModelsLin XChen TXiaotan Lin,1,2 Tingting Chen1 1School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China; 2Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of ChinaCorrespondence: Tingting Chen, School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China, Email jkf_ctt@163.comAbstract: Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic. Keywords: quantum dots, nanotoxicology, nanoparticle, toxicity, cytotoxichttps://www.dovepress.com/a-review-of-in-vivo-toxicity-of-quantum-dots-in-animal-models-peer-reviewed-fulltext-article-IJNquantum dotsnanotoxicologynanoparticletoxicitycytotoxic |
spellingShingle | Lin X Chen T A Review of in vivo Toxicity of Quantum Dots in Animal Models International Journal of Nanomedicine quantum dots nanotoxicology nanoparticle toxicity cytotoxic |
title | A Review of in vivo Toxicity of Quantum Dots in Animal Models |
title_full | A Review of in vivo Toxicity of Quantum Dots in Animal Models |
title_fullStr | A Review of in vivo Toxicity of Quantum Dots in Animal Models |
title_full_unstemmed | A Review of in vivo Toxicity of Quantum Dots in Animal Models |
title_short | A Review of in vivo Toxicity of Quantum Dots in Animal Models |
title_sort | review of in vivo toxicity of quantum dots in animal models |
topic | quantum dots nanotoxicology nanoparticle toxicity cytotoxic |
url | https://www.dovepress.com/a-review-of-in-vivo-toxicity-of-quantum-dots-in-animal-models-peer-reviewed-fulltext-article-IJN |
work_keys_str_mv | AT linx areviewofinvivotoxicityofquantumdotsinanimalmodels AT chent areviewofinvivotoxicityofquantumdotsinanimalmodels AT linx reviewofinvivotoxicityofquantumdotsinanimalmodels AT chent reviewofinvivotoxicityofquantumdotsinanimalmodels |