Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading
Abstract Fractured crystalline rocks have been chosen or are under consideration by several countries as host rock formations for deep geological repositories for spent nuclear fuel. In such geological formations, flow and solute transport are mostly controlled by a network of connected natural frac...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-55751-w |
_version_ | 1797266789319573504 |
---|---|
author | Paolo Trinchero Liangchao Zou Miquel de La Iglesia Aitor Iraola Patrick Bruines Guido Deissmann |
author_facet | Paolo Trinchero Liangchao Zou Miquel de La Iglesia Aitor Iraola Patrick Bruines Guido Deissmann |
author_sort | Paolo Trinchero |
collection | DOAJ |
description | Abstract Fractured crystalline rocks have been chosen or are under consideration by several countries as host rock formations for deep geological repositories for spent nuclear fuel. In such geological formations, flow and solute transport are mostly controlled by a network of connected natural fractures, each of them being characterised by internal heterogeneity, also denoted as roughness. Fractures are, in turn, subject to variable load caused by various factors, such as the presence of thick ice sheets formed during glaciation periods. Understanding how coupled hydro-mechanical (HM) processes affect flow and transport at the scale of a single natural fracture is crucial for a robust parameterisation of large-scale discrete fracture network models, which are not only used for nuclear waste disposal applications but are also of interest to problems related to geothermics, oil and gas production or groundwater remediation. In this work, we analyse and model an HM experiment carried out in a single natural fracture and use the results of both, the experimental and the modelling work, to get insights into fundamental questions such as the applicability of local cubic law or the effect of normal load on channeling. The initial fracture aperture was obtained from laser scanning of the two fracture surfaces and an equivalent initial aperture was then defined by moving the two fracture surfaces together and comparing the results obtained using a Navier–Stokes based computational fluid dynamics (CFD) model with the experimental flowrate obtained for unloaded conditions. The mechanical effect of the different loading stages was simulated using a high-resolution contact model. The different computed fracture apertures were then used to run groundwater flow simulations using a modified Reynolds equation. The results show that, without correction, local cubic law largely overestimates flowrates. Instead, we show that by explicitly acknowledging the difference between the mechanical aperture and the hydraulic aperture and setting the latter equal to 1/5 of the former, cubic law provides a very reasonable approximation of the experimental flowrates over the entire loading cycle. A positive correlation between fluid flow channeling and normal load is also found. |
first_indexed | 2024-04-25T01:06:16Z |
format | Article |
id | doaj.art-b626f0d986ea4a718144221c32aab242 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-04-25T01:06:16Z |
publishDate | 2024-03-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-b626f0d986ea4a718144221c32aab2422024-03-10T12:12:02ZengNature PortfolioScientific Reports2045-23222024-03-0114111410.1038/s41598-024-55751-wExperimental and numerical analysis of flow through a natural rough fracture subject to normal loadingPaolo Trinchero0Liangchao Zou1Miquel de La Iglesia2Aitor Iraola3Patrick Bruines4Guido Deissmann5AMPHOS 21 Consulting S.L.Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of TechnologyAMPHOS 21 Consulting S.L.AMPHOS 21 Consulting S.L.Swedish Nuclear Fuel and Waste Management CompanyInstitute of Energy and Climate Research: Nuclear Waste Management (IEK-6) and JARA-CSD, Forschungszentrum Jülich GmbHAbstract Fractured crystalline rocks have been chosen or are under consideration by several countries as host rock formations for deep geological repositories for spent nuclear fuel. In such geological formations, flow and solute transport are mostly controlled by a network of connected natural fractures, each of them being characterised by internal heterogeneity, also denoted as roughness. Fractures are, in turn, subject to variable load caused by various factors, such as the presence of thick ice sheets formed during glaciation periods. Understanding how coupled hydro-mechanical (HM) processes affect flow and transport at the scale of a single natural fracture is crucial for a robust parameterisation of large-scale discrete fracture network models, which are not only used for nuclear waste disposal applications but are also of interest to problems related to geothermics, oil and gas production or groundwater remediation. In this work, we analyse and model an HM experiment carried out in a single natural fracture and use the results of both, the experimental and the modelling work, to get insights into fundamental questions such as the applicability of local cubic law or the effect of normal load on channeling. The initial fracture aperture was obtained from laser scanning of the two fracture surfaces and an equivalent initial aperture was then defined by moving the two fracture surfaces together and comparing the results obtained using a Navier–Stokes based computational fluid dynamics (CFD) model with the experimental flowrate obtained for unloaded conditions. The mechanical effect of the different loading stages was simulated using a high-resolution contact model. The different computed fracture apertures were then used to run groundwater flow simulations using a modified Reynolds equation. The results show that, without correction, local cubic law largely overestimates flowrates. Instead, we show that by explicitly acknowledging the difference between the mechanical aperture and the hydraulic aperture and setting the latter equal to 1/5 of the former, cubic law provides a very reasonable approximation of the experimental flowrates over the entire loading cycle. A positive correlation between fluid flow channeling and normal load is also found.https://doi.org/10.1038/s41598-024-55751-w |
spellingShingle | Paolo Trinchero Liangchao Zou Miquel de La Iglesia Aitor Iraola Patrick Bruines Guido Deissmann Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading Scientific Reports |
title | Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading |
title_full | Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading |
title_fullStr | Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading |
title_full_unstemmed | Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading |
title_short | Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading |
title_sort | experimental and numerical analysis of flow through a natural rough fracture subject to normal loading |
url | https://doi.org/10.1038/s41598-024-55751-w |
work_keys_str_mv | AT paolotrinchero experimentalandnumericalanalysisofflowthroughanaturalroughfracturesubjecttonormalloading AT liangchaozou experimentalandnumericalanalysisofflowthroughanaturalroughfracturesubjecttonormalloading AT miqueldelaiglesia experimentalandnumericalanalysisofflowthroughanaturalroughfracturesubjecttonormalloading AT aitoriraola experimentalandnumericalanalysisofflowthroughanaturalroughfracturesubjecttonormalloading AT patrickbruines experimentalandnumericalanalysisofflowthroughanaturalroughfracturesubjecttonormalloading AT guidodeissmann experimentalandnumericalanalysisofflowthroughanaturalroughfracturesubjecttonormalloading |