Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor...

Full description

Bibliographic Details
Main Authors: Zhijun Xie, Guangyan Huang, Roozbeh Zarei, Jing He, Yanchun Zhang, Hongwu Ye
Format: Article
Language:English
Published: MDPI AG 2014-10-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/14/11/20562
Description
Summary:Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.
ISSN:1424-8220