Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells.
Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cel...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5035048?pdf=render |
_version_ | 1811221426419531776 |
---|---|
author | Shuji Hamauchi Hideo Shichinohe Haruto Uchino Shigeru Yamaguchi Naoki Nakayama Ken Kazumata Toshiya Osanai Takeo Abumiya Kiyohiro Houkin Takumi Era |
author_facet | Shuji Hamauchi Hideo Shichinohe Haruto Uchino Shigeru Yamaguchi Naoki Nakayama Ken Kazumata Toshiya Osanai Takeo Abumiya Kiyohiro Houkin Takumi Era |
author_sort | Shuji Hamauchi |
collection | DOAJ |
description | Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs.iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis.Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD.Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs. |
first_indexed | 2024-04-12T07:59:07Z |
format | Article |
id | doaj.art-b6395d8d767e44ec90e4a364574b7659 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T07:59:07Z |
publishDate | 2016-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-b6395d8d767e44ec90e4a364574b76592022-12-22T03:41:23ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01119e016356110.1371/journal.pone.0163561Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells.Shuji HamauchiHideo ShichinoheHaruto UchinoShigeru YamaguchiNaoki NakayamaKen KazumataToshiya OsanaiTakeo AbumiyaKiyohiro HoukinTakumi EraMoyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs.iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis.Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD.Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs.http://europepmc.org/articles/PMC5035048?pdf=render |
spellingShingle | Shuji Hamauchi Hideo Shichinohe Haruto Uchino Shigeru Yamaguchi Naoki Nakayama Ken Kazumata Toshiya Osanai Takeo Abumiya Kiyohiro Houkin Takumi Era Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. PLoS ONE |
title | Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. |
title_full | Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. |
title_fullStr | Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. |
title_full_unstemmed | Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. |
title_short | Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. |
title_sort | cellular functions and gene and protein expression profiles in endothelial cells derived from moyamoya disease specific ips cells |
url | http://europepmc.org/articles/PMC5035048?pdf=render |
work_keys_str_mv | AT shujihamauchi cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT hideoshichinohe cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT harutouchino cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT shigeruyamaguchi cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT naokinakayama cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT kenkazumata cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT toshiyaosanai cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT takeoabumiya cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT kiyohirohoukin cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells AT takumiera cellularfunctionsandgeneandproteinexpressionprofilesinendothelialcellsderivedfrommoyamoyadiseasespecificipscells |