Mechanical properties of hot-pressed SiC-TiC composites

SiC-TiC composites, with 0, 5, 10 and 20 vol.% of TiC, were sintered by the hot-pressing technique at temperature of 2000 °C under argon atmosphere. SiC sintering process was activated by liquid phase created by the reaction between Al2O3 and Y2O3, in which it is possible to dissolve passivating oxi...

Full description

Bibliographic Details
Main Authors: Kamil Kornaus, Grzegorz Grabowski, Marian Raczka, Dariusz Zientara, Agnieszka Gubernat
Format: Article
Language:English
Published: University of Novi Sad 2017-12-01
Series:Processing and Application of Ceramics
Subjects:
Online Access:http://www.tf.uns.ac.rs/publikacije/PAC/pdf/PAC%2038%2012.pdf
Description
Summary:SiC-TiC composites, with 0, 5, 10 and 20 vol.% of TiC, were sintered by the hot-pressing technique at temperature of 2000 °C under argon atmosphere. SiC sintering process was activated by liquid phase created by the reaction between Al2O3 and Y2O3, in which it is possible to dissolve passivating oxide layers (SiO2 and TiO2) and partially SiC and TiC carbides. Microstructure observation and density measurements confirmed that the composites were dense with uniformly distributed components. Differences in thermal expansion coefficients between SiC and TiC led to complex stress state occurrence. These stresses combined with the liquid-derived separate phase between grains boundaries increased fracture toughness of the composites, which ranged from 5.8 to 6.3 MPa·m0.5. Opposite to the bending strength, fracture toughness increased with the TiC volume fraction. By means of simulation of residual thermal stresses in the composites, it was found that with the increasing volume fraction of TiC, tensile stress in TiC grains is reduced simultaneously with strong rise of compressive stresses in the matrix.
ISSN:1820-6131
2406-1034