An Efficient Distributed Elliptic Positioning for Underground Remote Sensing

Remote surveying of unknown bound geometries, such as the mapping of underground water supplies and tunnels, remains a challenging task. The obstacles and absorption in media make the long-distance telecommunication and localization process inefficient due to mobile sensors’ power limitations. This...

Full description

Bibliographic Details
Main Authors: Sanaa S. Al-Samahi, Huda Ansaf, Bahaa I. K. Ansaf
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/16/2025
Description
Summary:Remote surveying of unknown bound geometries, such as the mapping of underground water supplies and tunnels, remains a challenging task. The obstacles and absorption in media make the long-distance telecommunication and localization process inefficient due to mobile sensors’ power limitations. This work develops a new short-range sequential localization approach to reduce the required amount of signal transmission power. The developed algorithm is based on a sequential localization process that can utilize a multitude of randomly distributed wireless sensors while only employing several anchors in the process. Time delay elliptic and frequency range techniques are employed in developing the proposed algebraic closed-form solution. The proposed method is highly effective as it reaches the Cramer–Rao Lower Bound performance level. The estimated positions can act as initializations for the iterative Maximum Likelihood Estimator (MLE) via the Taylor series linearization to acquire even higher positioning accuracy as needed. By reducing the need for high power at the transmit modules in the sensors, the developed localization approach can be used to design a compact sensor with low power consumption and greater longevity that can be utilized to explore unknown bounded geometries for life-long efficient observation mapping.
ISSN:2079-9292