Global Evapotranspiration Datasets Assessment Using Water Balance in South America

Evapotranspiration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula>) connects the land to the...

Full description

Bibliographic Details
Main Authors: Anderson Ruhoff, Bruno Comini de Andrade, Leonardo Laipelt, Ayan Santos Fleischmann, Vinícius Alencar Siqueira, Adriana Aparecida Moreira, Rafael Barbedo, Gabriele Leão Cyganski, Gabriel Matte Rios Fernandez, João Paulo Lyra Fialho Brêda, Rodrigo Cauduro Dias de Paiva, Adalberto Meller, Alexandre de Amorim Teixeira, Alexandre Abdalla Araújo, Marcus André Fuckner, Trent Biggs
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/11/2526
_version_ 1797491913726623744
author Anderson Ruhoff
Bruno Comini de Andrade
Leonardo Laipelt
Ayan Santos Fleischmann
Vinícius Alencar Siqueira
Adriana Aparecida Moreira
Rafael Barbedo
Gabriele Leão Cyganski
Gabriel Matte Rios Fernandez
João Paulo Lyra Fialho Brêda
Rodrigo Cauduro Dias de Paiva
Adalberto Meller
Alexandre de Amorim Teixeira
Alexandre Abdalla Araújo
Marcus André Fuckner
Trent Biggs
author_facet Anderson Ruhoff
Bruno Comini de Andrade
Leonardo Laipelt
Ayan Santos Fleischmann
Vinícius Alencar Siqueira
Adriana Aparecida Moreira
Rafael Barbedo
Gabriele Leão Cyganski
Gabriel Matte Rios Fernandez
João Paulo Lyra Fialho Brêda
Rodrigo Cauduro Dias de Paiva
Adalberto Meller
Alexandre de Amorim Teixeira
Alexandre Abdalla Araújo
Marcus André Fuckner
Trent Biggs
author_sort Anderson Ruhoff
collection DOAJ
description Evapotranspiration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula>) connects the land to the atmosphere, linking water, energy, and carbon cycles. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> are needed from regional to continental scales. This study compared eight global actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> datasets (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula>) and the average actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> ensemble (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) based on remote sensing, climate reanalysis, land-surface, and biophysical models to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> computed from basin-scale water balance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula>, comparing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>. Global <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>), and RMSE ranged from 35.6 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) to 40.5 mm·month<sup>−1</sup> (MOD16). Overall, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> estimates ranged from 0 to 150 mm·month<sup>−1</sup> in most basins in South America, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> estimates showed maximum rates up to 250 mm·month<sup>−1</sup>. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> in the humid tropics (in the Amazon), with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> for interannual variability. Assessing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> estimation and monitoring for water management.
first_indexed 2024-03-10T00:56:03Z
format Article
id doaj.art-b64a54c475f84f94aa766982880cea15
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T00:56:03Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-b64a54c475f84f94aa766982880cea152023-11-23T14:43:11ZengMDPI AGRemote Sensing2072-42922022-05-011411252610.3390/rs14112526Global Evapotranspiration Datasets Assessment Using Water Balance in South AmericaAnderson Ruhoff0Bruno Comini de Andrade1Leonardo Laipelt2Ayan Santos Fleischmann3Vinícius Alencar Siqueira4Adriana Aparecida Moreira5Rafael Barbedo6Gabriele Leão Cyganski7Gabriel Matte Rios Fernandez8João Paulo Lyra Fialho Brêda9Rodrigo Cauduro Dias de Paiva10Adalberto Meller11Alexandre de Amorim Teixeira12Alexandre Abdalla Araújo13Marcus André Fuckner14Trent Biggs15Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilMamirauá Institute for Sustainable Development, Tefe 69553-225, AM, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilInstituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, BrazilAgência Nacional de Águas e Saneamento Básico (ANA), Brasilia 70610-200, DF, BrazilAgência Nacional de Águas e Saneamento Básico (ANA), Brasilia 70610-200, DF, BrazilAgência Nacional de Águas e Saneamento Básico (ANA), Brasilia 70610-200, DF, BrazilAgência Nacional de Águas e Saneamento Básico (ANA), Brasilia 70610-200, DF, BrazilDepartment of Geography, San Diego State University, San Diego, CA 92182, USAEvapotranspiration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula>) connects the land to the atmosphere, linking water, energy, and carbon cycles. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> are needed from regional to continental scales. This study compared eight global actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> datasets (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula>) and the average actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> ensemble (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) based on remote sensing, climate reanalysis, land-surface, and biophysical models to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> computed from basin-scale water balance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula>, comparing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>. Global <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>), and RMSE ranged from 35.6 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>e</mi><mi>n</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) to 40.5 mm·month<sup>−1</sup> (MOD16). Overall, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> estimates ranged from 0 to 150 mm·month<sup>−1</sup> in most basins in South America, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> estimates showed maximum rates up to 250 mm·month<sup>−1</sup>. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> in the humid tropics (in the Amazon), with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>g</mi><mi>l</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>T</mi><mrow><mi>w</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> for interannual variability. Assessing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>T</mi></mrow></semantics></math></inline-formula> estimation and monitoring for water management.https://www.mdpi.com/2072-4292/14/11/2526global evapotranspirationbasin water balanceBESSERA5GLDASGLEAM
spellingShingle Anderson Ruhoff
Bruno Comini de Andrade
Leonardo Laipelt
Ayan Santos Fleischmann
Vinícius Alencar Siqueira
Adriana Aparecida Moreira
Rafael Barbedo
Gabriele Leão Cyganski
Gabriel Matte Rios Fernandez
João Paulo Lyra Fialho Brêda
Rodrigo Cauduro Dias de Paiva
Adalberto Meller
Alexandre de Amorim Teixeira
Alexandre Abdalla Araújo
Marcus André Fuckner
Trent Biggs
Global Evapotranspiration Datasets Assessment Using Water Balance in South America
Remote Sensing
global evapotranspiration
basin water balance
BESS
ERA5
GLDAS
GLEAM
title Global Evapotranspiration Datasets Assessment Using Water Balance in South America
title_full Global Evapotranspiration Datasets Assessment Using Water Balance in South America
title_fullStr Global Evapotranspiration Datasets Assessment Using Water Balance in South America
title_full_unstemmed Global Evapotranspiration Datasets Assessment Using Water Balance in South America
title_short Global Evapotranspiration Datasets Assessment Using Water Balance in South America
title_sort global evapotranspiration datasets assessment using water balance in south america
topic global evapotranspiration
basin water balance
BESS
ERA5
GLDAS
GLEAM
url https://www.mdpi.com/2072-4292/14/11/2526
work_keys_str_mv AT andersonruhoff globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT brunocominideandrade globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT leonardolaipelt globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT ayansantosfleischmann globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT viniciusalencarsiqueira globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT adrianaaparecidamoreira globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT rafaelbarbedo globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT gabrieleleaocyganski globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT gabrielmatteriosfernandez globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT joaopaulolyrafialhobreda globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT rodrigocaudurodiasdepaiva globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT adalbertomeller globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT alexandredeamorimteixeira globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT alexandreabdallaaraujo globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT marcusandrefuckner globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica
AT trentbiggs globalevapotranspirationdatasetsassessmentusingwaterbalanceinsouthamerica