Summary: | The prognostic and health management (PHM) of lithium-ion batteries has received increasing attention in recent years. The remaining useful life (RUL) prediction and state of health (SOH) monitoring are two important parts in PHM of the lithium-ion battery. Nowadays, the development of signal processing technology and neural network technology introduces new data-driven methods to RUL prediction and SOH monitoring of the lithium-ion battery. This paper presents a neural-network-based method that combines long short-term memory (LSTM) network with particle swarm optimization and attention mechanism for RUL prediction and SOH monitoring of the lithium-ion battery. Before predicting RUL of the lithium-ion battery, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is utilized for the raw data denoising, which can improve the accuracy of prediction. A real-life cycle dataset of lithium-ion batteries from NASA is used to evaluate the proposed method, and the experiment results show that when compared with traditional methods, the proposed method has higher accuracy.
|