Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
Abstract We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-05-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP05(2019)015 |
_version_ | 1811286510373175296 |
---|---|
author | Juri Fiaschi Michael Klasen Simon May |
author_facet | Juri Fiaschi Michael Klasen Simon May |
author_sort | Juri Fiaschi |
collection | DOAJ |
description | Abstract We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of neutrino masses, which are generated radiatively. This holds even if singlet-doublet fermions and triplet scalars never contribute simultaneously to the dark matter abundance. However, this also implies the existence of lepton flavour violating processes. In addition, this particular model allows for gauge coupling unification. The new fields are odd under a new ℤ2 symmetry to stabilise the dark matter candidate. We analyse the dark matter, neutrino mass and lepton flavour violation aspects both separately and in conjunction, exploring the viable parameter space of the model. This is done using a numerical random scan imposing successively the neutrino mass and mixing, relic density, Higgs mass, direct detection, collider and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above. The narrow mass regions found previously for the two separate models are enlarged by their coupling. While coannihilations of the weak isospin partners are sizeable, this is not the case for fermions and scalars despite their often similar masses due to the relatively small coupling of the two sectors, imposed by the small neutrino masses. We observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector. |
first_indexed | 2024-04-13T03:01:52Z |
format | Article |
id | doaj.art-b65e5ce721464ce78dd7ba4dfb6d63c2 |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-04-13T03:01:52Z |
publishDate | 2019-05-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-b65e5ce721464ce78dd7ba4dfb6d63c22022-12-22T03:05:24ZengSpringerOpenJournal of High Energy Physics1029-84792019-05-012019512410.1007/JHEP05(2019)015Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino massesJuri Fiaschi0Michael Klasen1Simon May2Institut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterInstitut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterInstitut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterAbstract We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of neutrino masses, which are generated radiatively. This holds even if singlet-doublet fermions and triplet scalars never contribute simultaneously to the dark matter abundance. However, this also implies the existence of lepton flavour violating processes. In addition, this particular model allows for gauge coupling unification. The new fields are odd under a new ℤ2 symmetry to stabilise the dark matter candidate. We analyse the dark matter, neutrino mass and lepton flavour violation aspects both separately and in conjunction, exploring the viable parameter space of the model. This is done using a numerical random scan imposing successively the neutrino mass and mixing, relic density, Higgs mass, direct detection, collider and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above. The narrow mass regions found previously for the two separate models are enlarged by their coupling. While coannihilations of the weak isospin partners are sizeable, this is not the case for fermions and scalars despite their often similar masses due to the relatively small coupling of the two sectors, imposed by the small neutrino masses. We observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector.http://link.springer.com/article/10.1007/JHEP05(2019)015Beyond Standard ModelCosmology of Theories beyond the SMNeutrino PhysicsDiscrete Symmetries |
spellingShingle | Juri Fiaschi Michael Klasen Simon May Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses Journal of High Energy Physics Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics Discrete Symmetries |
title | Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses |
title_full | Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses |
title_fullStr | Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses |
title_full_unstemmed | Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses |
title_short | Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses |
title_sort | singlet doublet fermion and triplet scalar dark matter with radiative neutrino masses |
topic | Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics Discrete Symmetries |
url | http://link.springer.com/article/10.1007/JHEP05(2019)015 |
work_keys_str_mv | AT jurifiaschi singletdoubletfermionandtripletscalardarkmatterwithradiativeneutrinomasses AT michaelklasen singletdoubletfermionandtripletscalardarkmatterwithradiativeneutrinomasses AT simonmay singletdoubletfermionandtripletscalardarkmatterwithradiativeneutrinomasses |