De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane

We consider the multipoint de la Vallée Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$,~$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also...

Full description

Bibliographic Details
Main Authors: Valentin V Napalkov, Karina R Zimens
Format: Article
Language:English
Published: Samara State Technical University 2015-06-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Subjects:
Online Access:https://journals.eco-vector.com/1991-8615/article/viewFile/20459/16706
_version_ 1818059889593810944
author Valentin V Napalkov
Karina R Zimens
author_facet Valentin V Napalkov
Karina R Zimens
author_sort Valentin V Napalkov
collection DOAJ
description We consider the multipoint de la Vallée Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$,~$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
first_indexed 2024-12-10T13:23:42Z
format Article
id doaj.art-b665fdcbf0dd4000862278104e2be4b5
institution Directory Open Access Journal
issn 1991-8615
2310-7081
language English
last_indexed 2024-12-10T13:23:42Z
publishDate 2015-06-01
publisher Samara State Technical University
record_format Article
series Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
spelling doaj.art-b665fdcbf0dd4000862278104e2be4b52022-12-22T01:47:16ZengSamara State Technical UniversityVestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki1991-86152310-70812015-06-0119228329210.14498/vsgtu135517879De la Vallée Poussin problem in the kernel of the convolution operator on the half-planeValentin V Napalkov0Karina R Zimens1Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of SciencesUfa State Aviation Technical UniversityWe consider the multipoint de la Vallée Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$,~$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.https://journals.eco-vector.com/1991-8615/article/viewFile/20459/16706convolution operatorde la vallée poussin problemmultiple interpolation
spellingShingle Valentin V Napalkov
Karina R Zimens
De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
convolution operator
de la vallée poussin problem
multiple interpolation
title De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane
title_full De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane
title_fullStr De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane
title_full_unstemmed De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane
title_short De la Vallée Poussin problem in the kernel of the convolution operator on the half-plane
title_sort de la vallee poussin problem in the kernel of the convolution operator on the half plane
topic convolution operator
de la vallée poussin problem
multiple interpolation
url https://journals.eco-vector.com/1991-8615/article/viewFile/20459/16706
work_keys_str_mv AT valentinvnapalkov delavalleepoussinprobleminthekerneloftheconvolutionoperatoronthehalfplane
AT karinarzimens delavalleepoussinprobleminthekerneloftheconvolutionoperatoronthehalfplane