Reversing orientation homeomorphisms of surfaces

Let $M$ be a connected compact orientable surface, $f:M\to \mathbb{R}$ be a Morse function, and $h:M\to M$ be a diffeomorphism which preserves $f$ in the sense that $f\circ h = f$. We will show that if $h$ leaves invariant each regular component of each level set of $f$ and reverses its orientation...

Full description

Bibliographic Details
Main Authors: Iryna Kuznietsova, Sergiy Maksymenko
Format: Article
Language:English
Published: Odesa National University of Technology 2021-03-01
Series:Pracì Mìžnarodnogo Geometričnogo Centru
Subjects:
Online Access:https://journals.onaft.edu.ua/index.php/geometry/article/view/1953
Description
Summary:Let $M$ be a connected compact orientable surface, $f:M\to \mathbb{R}$ be a Morse function, and $h:M\to M$ be a diffeomorphism which preserves $f$ in the sense that $f\circ h = f$. We will show that if $h$ leaves invariant each regular component of each level set of $f$ and reverses its orientation, then $h^2$ is isotopic to the identity map of $M$ via $f$-preserving isotopy. This statement can be regarded as a foliated and a homotopy analogue of a well known observation that every reversing orientation orthogonal isomorphism of a plane has order $2$, i.e. a mirror symmetry with respect to some line. The obtained results hold in fact for a larger class of maps with isolated singularities from compact orientable surfaces to the real line and the circle.
ISSN:2072-9812
2409-8906