miR-34c disrupts spermatogonial stem cell homeostasis in cryptorchid testes by targeting Nanos2

Abstract Background Cryptorchidism as a common genitourinary malformation with the serious complication of male infertility draws widespread attention. With several reported miRNAs playing critical roles in spermatogonial stem cells (SSCs), we aimed to explore the fundamental function of the highly...

Full description

Bibliographic Details
Main Authors: Zhenyu Huang, Dongdong Tang, Jingjing Gao, Xianming Dou, Peng Cheng, Dangwei Peng, Yao Zhang, Jun Mao, Li Zhang, Xiansheng Zhang
Format: Article
Language:English
Published: BMC 2018-10-01
Series:Reproductive Biology and Endocrinology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12958-018-0417-z
Description
Summary:Abstract Background Cryptorchidism as a common genitourinary malformation with the serious complication of male infertility draws widespread attention. With several reported miRNAs playing critical roles in spermatogonial stem cells (SSCs), we aimed to explore the fundamental function of the highly conserved miR-34c in cryptorchidism. Methods To explore whether miR-34c participates in spermatogenesis by regulating Nanos2, we examined the effect of overexpression and inhibition for miR-34c on Nanos2 expression in GC-1 cells. Moreover, the expression levels of miR-34c and Nanos2 with cryptorchidism in humans and mice were examined. Furthermore, the homeostasis of SSCs was evaluated through counting the number of promyelocytic leukemia zinc finger (PLZF) positive spermatogonia in murine cryptorchid testes. Results In the present study, we show that miR-34c could inhibit the expression of Nanos2 in GC-1 cells. Meanwhile, miR-34c significantly decreased in both the testicular tissues of patients with cryptorchidism and surgery-induced murine model of cryptorchidism. Western blot revealed that the protein level of Nanos2 was up-regulated and showed to be negatively correlated to the expression of miR-34c in our model. The abnormal expression of miR-34c/Nanos2 disrupted the balance between SSC self-renewal and differentiation, eventually damaging the spermatogenesis of cryptorchid testes. Conclusions The miR-34c/Nanos2 pathway provides new insight into the mechanism of male infertility caused by cryptorchidism. Our results indicate that miR-34c may serve as a biological marker for treatment of infertility caused by cryptorchidism.
ISSN:1477-7827