Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728
The superb image quality, stability, and sensitivity of JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based observations. We present an assessment of several deconvolution approaches to improve image quality and mitigate the effects of the complex JWST poin...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2024-01-01
|
Series: | The Astronomical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-3881/ad1886 |
_version_ | 1797322248644722688 |
---|---|
author | M. T. Leist C. Packham D. J. V. Rosario D. A. Hope A. Alonso-Herrero E. K. S. Hicks S. Hönig L. Zhang R. Davies T. Díaz-Santos O. González-Martín E. Bellocchi P. G. Boorman F. Combes I. García-Bernete S. García-Burillo B. García-Lorenzo H. Haidar K. Ichikawa M. Imanishi S. M. Jefferies Á. Labiano N. A. Levenson R. Nikutta M. Pereira-Santaella C. Ramos Almeida C. Ricci D. Rigopoulou W. Schaefer M. Stalevski M. J. Ward L. Fuller T. Izumi D. Rouan T. Shimizu |
author_facet | M. T. Leist C. Packham D. J. V. Rosario D. A. Hope A. Alonso-Herrero E. K. S. Hicks S. Hönig L. Zhang R. Davies T. Díaz-Santos O. González-Martín E. Bellocchi P. G. Boorman F. Combes I. García-Bernete S. García-Burillo B. García-Lorenzo H. Haidar K. Ichikawa M. Imanishi S. M. Jefferies Á. Labiano N. A. Levenson R. Nikutta M. Pereira-Santaella C. Ramos Almeida C. Ricci D. Rigopoulou W. Schaefer M. Stalevski M. J. Ward L. Fuller T. Izumi D. Rouan T. Shimizu |
author_sort | M. T. Leist |
collection | DOAJ |
description | The superb image quality, stability, and sensitivity of JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based observations. We present an assessment of several deconvolution approaches to improve image quality and mitigate the effects of the complex JWST point-spread function (PSF). The optimal deconvolution method is determined by using WebbPSF to simulate JWST’s complex PSF and MIRISim to simulate multiband JWST/Mid-Infrared Imager Module (MIRIM) observations of a toy model of an active galactic nucleus (AGN). Five different deconvolution algorithms are tested: (1) Kraken deconvolution, (2) Richardson–Lucy, (3) the adaptive imaging deconvolution algorithm, (4) sparse regularization with the Condat–Vũ algorithm, and (5) iterative Wiener filtering and thresholding. We find that Kraken affords the greatest FWHM reduction of the nuclear source of our MIRISim observations for the toy AGN model while retaining good photometric integrity across all simulated wave bands. Applying Kraken to Galactic Activity, Torus, and Outflow Survey (GATOS) multiband JWST/MIRIM observations of the Seyfert 2 galaxy NGC 5728, we find that the algorithm reduces the FWHM of the nuclear source by a factor of 1.6–2.2 across all five filters. Kraken images facilitate detection of extended nuclear emission ∼2.″5 (∼470 pc, position angle ≃ 115°) in the SE–NW direction, especially at the longest wavelengths. We demonstrate that Kraken is a powerful tool to enhance faint features otherwise hidden in the complex JWST PSF. |
first_indexed | 2024-03-08T05:11:27Z |
format | Article |
id | doaj.art-b67ef29a56634779b1014dac2c621a2c |
institution | Directory Open Access Journal |
issn | 1538-3881 |
language | English |
last_indexed | 2024-03-08T05:11:27Z |
publishDate | 2024-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astronomical Journal |
spelling | doaj.art-b67ef29a56634779b1014dac2c621a2c2024-02-07T09:23:02ZengIOP PublishingThe Astronomical Journal1538-38812024-01-0116739610.3847/1538-3881/ad1886Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728M. T. Leist0https://orcid.org/0000-0003-4975-2046C. Packham1https://orcid.org/0000-0001-7827-5758D. J. V. Rosario2https://orcid.org/0000-0002-0001-3587D. A. Hope3https://orcid.org/0000-0002-7957-7018A. Alonso-Herrero4https://orcid.org/0000-0001-6794-2519E. K. S. Hicks5https://orcid.org/0000-0002-4457-5733S. Hönig6L. Zhang7https://orcid.org/0000-0003-4937-9077R. Davies8https://orcid.org/0000-0003-4949-7217T. Díaz-Santos9https://orcid.org/0000-0003-0699-6083O. González-Martín10https://orcid.org/0000-0002-2356-8358E. Bellocchi11https://orcid.org/0000-0001-9791-4228P. G. Boorman12https://orcid.org/0000-0001-9379-4716F. Combes13https://orcid.org/0000-0003-2658-7893I. García-Bernete14https://orcid.org/0000-0002-9627-5281S. García-Burillo15https://orcid.org/0000-0003-0444-6897B. García-Lorenzo16https://orcid.org/0000-0002-7228-7173H. Haidar17K. Ichikawa18https://orcid.org/0000-0002-4377-903XM. Imanishi19https://orcid.org/0000-0001-6186-8792S. M. Jefferies20https://orcid.org/0000-0002-9580-5615Á. Labiano21https://orcid.org/0000-0002-0690-8824N. A. Levenson22https://orcid.org/0000-0003-4209-639XR. Nikutta23https://orcid.org/0000-0002-7052-6900M. Pereira-Santaella24https://orcid.org/0000-0002-4005-9619C. Ramos Almeida25https://orcid.org/0000-0001-8353-649XC. Ricci26https://orcid.org/0000-0001-5231-2645D. Rigopoulou27https://orcid.org/0000-0001-6854-7545W. Schaefer28https://orcid.org/0009-0008-9534-4661M. Stalevski29https://orcid.org/0000-0001-5146-8330M. J. Ward30L. Fuller31https://orcid.org/0000-0003-4809-6147T. Izumi32https://orcid.org/0000-0001-9452-0813D. Rouan33T. Shimizu34https://orcid.org/0000-0002-2125-4670Department of Physics and Astronomy, The University of Texas at San Antonio , 1 UTSA Circle, San Antonio, TX 78249-0600, USA ; mason.leist@utsa.eduDepartment of Physics and Astronomy, The University of Texas at San Antonio , 1 UTSA Circle, San Antonio, TX 78249-0600, USA ; mason.leist@utsa.edu; National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS) , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanSchool of Mathematics, Statistics and Physics, Newcastle University , Newcastle upon Tyne NE1 7RU, UKGeorgia State University , Physics and Astronomy Department, 25 Park Place, Atlanta, GA 30303, USA; Georgia Tech Research Institute , Electro-Optical Systems Laboratory, 925 Dalney Street NW, Atlanta, GA 30318-0834, USACentro de Astrobiología (CAB) , CSIC-INTA, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, SpainDepartment of Physics and Astronomy, University of Alaska Anchorage , Anchorage, AK 99508-4664, USASchool of Physics and Astronomy, University of Southampton , Southampton SO17 1BJ, UKDepartment of Physics and Astronomy, The University of Texas at San Antonio , 1 UTSA Circle, San Antonio, TX 78249-0600, USA ; mason.leist@utsa.eduMax Planck Institut für Extraterrestrische Physik , Giessenbachstrasse 1, D-85748 Garching bei München, GermanyInstitute of Astrophysics, Foundation for Research and Technology-Hellas (FORTH) , Heraklion 70013, Greece; School of Sciences, European University Cyprus , Diogenes St., Engomi, 1516 Nicosia, CyprusInstituto de Radioastronomía y Astrofísica (IRyA), Universidad Nacional Autónoma de México , Antigua Carretera a Pátzcuaro #8701, ExHda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, MéxicoDepartmento de Física de la Tierra y Astrofísica, Fac. de CC Físicas, Universidad Complutense de Madrid , E-28040 Madrid, Spain; Instituto de Física de Partículas y del Cosmos IPARCOS, Fac. CC Físicas, Universidad Complutense de Madrid , E-28040 Madrid, SpainCahill Center for Astronomy and Astrophysics, California Institute of Technology , Pasadena, CA 91125, USA; Astronomical Institute of the Czech Academy of Sciences , Boční-II 1401, Praha 4, Prague 141 00, Czech RepublicLERMA, Observatoire de Paris, Collége de France, PSL University , CNRS, Sorbonne University, Paris, FranceAstrophysics, University of Oxford , DWB, Keble Road, Oxford OX1 3RH, UKObservatorio de Madrid , OAN-IGN, Alfonso XII, 3, E-28014 Madrid, SpainInstituto de Astrofísica de Canarias , Calle Vía Láctea, s/n, E-38205 La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife, SpainSchool of Mathematics, Statistics and Physics, Newcastle University , Newcastle upon Tyne NE1 7RU, UKAstronomical Institute, Tohoku University , Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai 980-8578, JapanNational Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS) , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Department of Astronomy, School of Science, Graduate University for Advanced Studies (SOKENDAI) , Mitaka, Tokyo 181-8588, JapanGeorgia State University , Physics and Astronomy Department, 25 Park Place, Atlanta, GA 30303, USATelespazio UK for the European Space Agency , ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, SpainSpace Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USANSF’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab) , 950 N. Cherry Avenue, Tucson, AZ 85719, USAInstituto de Física Fundamental , CSIC, Calle Serrano 123, E-28006 Madrid, SpainInstituto de Astrofísica de Canarias , Calle Vía Láctea, s/n, E-38205 La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife, SpainNúcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales , Av. Ejército Libertador 441, Santiago, Chile; Kavli Institute for Astronomy and Astrophysics, Peking University , Beijing 100871, People’s Republic of ChinaInstitute of Astrophysics, Foundation for Research and Technology-Hellas (FORTH) , Heraklion 70013, Greece; Astrophysics, University of Oxford , DWB, Keble Road, Oxford OX1 3RH, UKTeaching Learning and Digital Transformation, Academic Innovation, The University of Texas at San Antonio , 1 UTSA Circle, San Antonio, TX 78249-0600, USAAstronomical Observatory , Volgina 7, 11060 Belgrade, Serbia; Sterrenkundig Observatorium, Universiteit Gent , Krijgslaan 281-S9, Gent B-9000, BelgiumCentre for Extragalactic Astronomy, Department of Physics, Durham University , South Road, Durham DH1 3LE, UKDepartment of Physics and Astronomy, The University of Texas at San Antonio , 1 UTSA Circle, San Antonio, TX 78249-0600, USA ; mason.leist@utsa.eduNational Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS) , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Department of Astronomy, School of Science, Graduate University for Advanced Studies (SOKENDAI) , Mitaka, Tokyo 181-8588, JapanLESIA, Observatoire de Paris, Université PSL , CNRS, Sorbonne Université, Sorbonne Paris Citeé, 5 place Jules Janssen, F-92195 Meudon, FranceMax Planck Institut für Extraterrestrische Physik , Giessenbachstrasse 1, D-85748 Garching bei München, GermanyThe superb image quality, stability, and sensitivity of JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based observations. We present an assessment of several deconvolution approaches to improve image quality and mitigate the effects of the complex JWST point-spread function (PSF). The optimal deconvolution method is determined by using WebbPSF to simulate JWST’s complex PSF and MIRISim to simulate multiband JWST/Mid-Infrared Imager Module (MIRIM) observations of a toy model of an active galactic nucleus (AGN). Five different deconvolution algorithms are tested: (1) Kraken deconvolution, (2) Richardson–Lucy, (3) the adaptive imaging deconvolution algorithm, (4) sparse regularization with the Condat–Vũ algorithm, and (5) iterative Wiener filtering and thresholding. We find that Kraken affords the greatest FWHM reduction of the nuclear source of our MIRISim observations for the toy AGN model while retaining good photometric integrity across all simulated wave bands. Applying Kraken to Galactic Activity, Torus, and Outflow Survey (GATOS) multiband JWST/MIRIM observations of the Seyfert 2 galaxy NGC 5728, we find that the algorithm reduces the FWHM of the nuclear source by a factor of 1.6–2.2 across all five filters. Kraken images facilitate detection of extended nuclear emission ∼2.″5 (∼470 pc, position angle ≃ 115°) in the SE–NW direction, especially at the longest wavelengths. We demonstrate that Kraken is a powerful tool to enhance faint features otherwise hidden in the complex JWST PSF.https://doi.org/10.3847/1538-3881/ad1886DeconvolutionJames Webb Space TelescopeActive galactic nuclei |
spellingShingle | M. T. Leist C. Packham D. J. V. Rosario D. A. Hope A. Alonso-Herrero E. K. S. Hicks S. Hönig L. Zhang R. Davies T. Díaz-Santos O. González-Martín E. Bellocchi P. G. Boorman F. Combes I. García-Bernete S. García-Burillo B. García-Lorenzo H. Haidar K. Ichikawa M. Imanishi S. M. Jefferies Á. Labiano N. A. Levenson R. Nikutta M. Pereira-Santaella C. Ramos Almeida C. Ricci D. Rigopoulou W. Schaefer M. Stalevski M. J. Ward L. Fuller T. Izumi D. Rouan T. Shimizu Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728 The Astronomical Journal Deconvolution James Webb Space Telescope Active galactic nuclei |
title | Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728 |
title_full | Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728 |
title_fullStr | Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728 |
title_full_unstemmed | Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728 |
title_short | Deconvolution of JWST/MIRI Images: Applications to an Active Galactic Nucleus Model and GATOS Observations of NGC 5728 |
title_sort | deconvolution of jwst miri images applications to an active galactic nucleus model and gatos observations of ngc 5728 |
topic | Deconvolution James Webb Space Telescope Active galactic nuclei |
url | https://doi.org/10.3847/1538-3881/ad1886 |
work_keys_str_mv | AT mtleist deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT cpackham deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT djvrosario deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT dahope deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT aalonsoherrero deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT ekshicks deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT shonig deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT lzhang deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT rdavies deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT tdiazsantos deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT ogonzalezmartin deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT ebellocchi deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT pgboorman deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT fcombes deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT igarciabernete deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT sgarciaburillo deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT bgarcialorenzo deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT hhaidar deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT kichikawa deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT mimanishi deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT smjefferies deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT alabiano deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT nalevenson deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT rnikutta deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT mpereirasantaella deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT cramosalmeida deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT cricci deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT drigopoulou deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT wschaefer deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT mstalevski deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT mjward deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT lfuller deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT tizumi deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT drouan deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 AT tshimizu deconvolutionofjwstmiriimagesapplicationstoanactivegalacticnucleusmodelandgatosobservationsofngc5728 |