Summary: | Mesocarbon microbead-silicon carbide (MCMB-SiC) composites were prepared by hot-press sintering (2100 °C/40 MPa/1 h) with two different graphitized MCMBs as the second phase, which exhibited good self-lubricating properties. The effects of the graphitization degree of the MCMBs on the microstructure and properties of the composites were investigated contrastively. The results showed that the composites that added raw MCMBs with a low degree of graphitization had excellent self-sintering properties, higher densities, and better mechanical properties; by comparison, the composites that added mature MCMBs with a high degree of graphitization, which has regular and orderly lamellar structures, not only had good mechanical properties but also exhibited a lower and more stable dry friction coefficient (0.35), despite the higher wear rate (2.66 × 10<sup>−6</sup> mm<sup>3</sup>·N<sup>−1</sup>·m<sup>−1</sup>). Large amounts of mature MCMBs were peeled off during the friction process to form a uniform and flat graphite lubricating film, which was the main reason for reducing the dry friction coefficient of the self-lubricating composites and making the friction coefficient more stable.
|