A new virtue of phantom MRI data: explaining variance in human participant data [version 1; peer review: 1 approved, 2 approved with reservations, 1 not approved]

Background: Magnetic resonance imaging (MRI) is an important yet complex data acquisition technology for studying the brain. MRI signals can be affected by many factors and many sources of variance are often simply attributed to “noise”. Unexplained variance in MRI data hinders the statistical power...

Full description

Bibliographic Details
Main Authors: Christopher P. Cheng, Yaroslav O. Halchenko
Format: Article
Language:English
Published: F1000 Research Ltd 2020-09-01
Series:F1000Research
Online Access:https://f1000research.com/articles/9-1131/v1
Description
Summary:Background: Magnetic resonance imaging (MRI) is an important yet complex data acquisition technology for studying the brain. MRI signals can be affected by many factors and many sources of variance are often simply attributed to “noise”. Unexplained variance in MRI data hinders the statistical power of MRI studies and affects their reproducibility. We hypothesized that it would be possible to use phantom data as a proxy of scanner characteristics with a simplistic model of seasonal variation to explain some variance in human MRI data. Methods: We used MRI data from human participants collected in several studies, as well as phantom data collected weekly for scanner quality assurance (QA) purposes. From phantom data we identified the variables most likely to explain variance in acquired data and assessed their statistical significance by using them to model signal-to-noise ratio (SNR), a fundamental MRI QA metric. We then included phantom data SNR in the models of morphometric measures obtained from human anatomical MRI data from the same scanner. Results: Phantom SNR and seasonal variation, after multiple comparisons correction, were statistically significant predictors of the volume of gray brain matter. However, a sweep over 16 other brain matter areas and types revealed no statistically significant predictors among phantom SNR or seasonal variables after multiple comparison correction. Conclusions: Seasonal variation and phantom SNR may be important factors to account for in MRI studies. Our results show weak support that seasonal variations are primarily caused by biological human factors instead of scanner performance variation. The phantom QA metric and scanning parameters are useful for more than just QA. Using QA metrics, scanning parameters, and seasonal variation data can help account for some variance in MRI studies, thus making them more powerful and reproducible.
ISSN:2046-1402