Effect of Residence Time on Hydrothermal Carbonization of Corn Cob Residual

Hydrothermal carbonization is a promising technique for conversion of industrial waste into valuable products. Producing hydrochar from corn cob residual (CCR) in a cost-effective way is key, from an economic standpoint. For this purpose, the effect of residence time in the range of 0.5 to 6 h was s...

Full description

Bibliographic Details
Main Authors: Lei Zhang, Shanshan Liu, Baobin Wang, Qiang Wang, Guihua Yang, Jiachuan Chen
Format: Article
Language:English
Published: North Carolina State University 2015-05-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_3_3979_Zhang_Residence_Time_Hydrothermal_Carbonization
Description
Summary:Hydrothermal carbonization is a promising technique for conversion of industrial waste into valuable products. Producing hydrochar from corn cob residual (CCR) in a cost-effective way is key, from an economic standpoint. For this purpose, the effect of residence time in the range of 0.5 to 6 h was studied under the optimal temperature of 250 °C. Results showed that the higher heating value (HHV) of hydrochar increased approximately 40% in comparison to that of the raw material; however, prolonging the residence time beyond 0.5 h had a negligible effect on the HHV increase. Chemical compositions and H/C and O/C ratios of hydrochars revealed a minimal effect of longer residence time. Furthermore, thermogravimetric and derivative thermogravimetric analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis of hydrochars also verified that the pyrolysis behavior and chemical structure of hydrochars with various residence times were similar.
ISSN:1930-2126
1930-2126