The optical control of phase locking of polariton condensates

The phase and the frequency of an exciton polariton condensate excited by a nonresonant pump can be efficiently manipulated by an external coherent light. Being tuned close to the resonance with the condensate eigenfrequency, the external laser light imposes its frequency to the condensate and locks...

Full description

Bibliographic Details
Main Authors: I Y Chestnov, A V Kavokin, A V Yulin
Format: Article
Language:English
Published: IOP Publishing 2019-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab4d03
Description
Summary:The phase and the frequency of an exciton polariton condensate excited by a nonresonant pump can be efficiently manipulated by an external coherent light. Being tuned close to the resonance with the condensate eigenfrequency, the external laser light imposes its frequency to the condensate and locks its phase, thereby manifesting a synchronization effect. The conditions of formation of the phase synchronized regime are determined. The synchronization of a couple of closely spaced polariton condensates by a spatially uniform coherent light is examined. At the moderate strength of the coherent driving the synchronization is accompanied by the appearance of symmetry-breaking states of the polariton dyad, while these states are superseded by the symmetric state at the high-intensity driving. By employing a zero-dimensional model of coupled dissipative oscillators with both dissipative and conservative coupling, we study the bifurcation scenario of the symmetry-breaking state formation.
ISSN:1367-2630