Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik

<p class="BodyAbstract">One indicator of college efficiency is the study period of the students. It is important for university managers to improve the ratio of students who graduate on time. This research aims to analyze the characteristics that affect the study period of students f...

Full description

Bibliographic Details
Main Author: Gita Indah Marthasari
Format: Article
Language:English
Published: University of Darussalam Gontor 2017-11-01
Series:Fountain of Informatics Journal
Subjects:
Online Access:https://ejournal.unida.gontor.ac.id/index.php/FIJ/article/view/1216
_version_ 1797944643279650816
author Gita Indah Marthasari
author_facet Gita Indah Marthasari
author_sort Gita Indah Marthasari
collection DOAJ
description <p class="BodyAbstract">One indicator of college efficiency is the study period of the students. It is important for university managers to improve the ratio of students who graduate on time. This research aims to analyze the characteristics that affect the study period of students from academic data. The methods used are association rule mining (ARM) and clustering. We propose a framework to analyze academic data using ARM dan clustering method. ARM method is a method to find association rules that meet minimum support and minimum confidence. The algorithm used is Apriori. While clustering using Simple Expectation-Maximization (EM-clustering) algorithm. Simple EM is a model-based algorithm that searches for maximum likelihood estimation in the probability model. The variables analyzed were student achievement index, province of the students, and type of high school. The analysis is done using WEKA. Research begins with the collection of data from the primary source of the Biro Administrasi Akademik (BAA) Universitas Muhammadiyah Malang (UMM). Then, we do the data cleaning and transformation. Analyzing process is done in two step. First, do a rule search using Apriori algorithm. The regulated parameters are the minimum support and minimum confidence value. Second, we use Simple EM algorithm for the clustering process. The experiments were conducted to find the clustering result with the largest log likelihood value. Based on the experiment, the method used successfully describes the characteristics based on the study period.</p>
first_indexed 2024-04-10T20:41:50Z
format Article
id doaj.art-b6bb04b76c6b439a8b67d3c706f546f4
institution Directory Open Access Journal
issn 2541-4313
2548-5113
language English
last_indexed 2024-04-10T20:41:50Z
publishDate 2017-11-01
publisher University of Darussalam Gontor
record_format Article
series Fountain of Informatics Journal
spelling doaj.art-b6bb04b76c6b439a8b67d3c706f546f42023-01-24T18:21:16ZengUniversity of Darussalam GontorFountain of Informatics Journal2541-43132548-51132017-11-0122566310.21111/fij.v2i2.1216867Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data AkademikGita Indah Marthasari0Universitas Muhammadiyah Malang<p class="BodyAbstract">One indicator of college efficiency is the study period of the students. It is important for university managers to improve the ratio of students who graduate on time. This research aims to analyze the characteristics that affect the study period of students from academic data. The methods used are association rule mining (ARM) and clustering. We propose a framework to analyze academic data using ARM dan clustering method. ARM method is a method to find association rules that meet minimum support and minimum confidence. The algorithm used is Apriori. While clustering using Simple Expectation-Maximization (EM-clustering) algorithm. Simple EM is a model-based algorithm that searches for maximum likelihood estimation in the probability model. The variables analyzed were student achievement index, province of the students, and type of high school. The analysis is done using WEKA. Research begins with the collection of data from the primary source of the Biro Administrasi Akademik (BAA) Universitas Muhammadiyah Malang (UMM). Then, we do the data cleaning and transformation. Analyzing process is done in two step. First, do a rule search using Apriori algorithm. The regulated parameters are the minimum support and minimum confidence value. Second, we use Simple EM algorithm for the clustering process. The experiments were conducted to find the clustering result with the largest log likelihood value. Based on the experiment, the method used successfully describes the characteristics based on the study period.</p>https://ejournal.unida.gontor.ac.id/index.php/FIJ/article/view/1216masa studialgoritma apriorialgoritma simple expectation maximizationdata mining untuk pendidikanweka
spellingShingle Gita Indah Marthasari
Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik
Fountain of Informatics Journal
masa studi
algoritma apriori
algoritma simple expectation maximization
data mining untuk pendidikan
weka
title Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik
title_full Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik
title_fullStr Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik
title_full_unstemmed Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik
title_short Implementasi Teknik Data Mining untuk Evaluasi Kinerja Mahasiswa Berdasarkan Data Akademik
title_sort implementasi teknik data mining untuk evaluasi kinerja mahasiswa berdasarkan data akademik
topic masa studi
algoritma apriori
algoritma simple expectation maximization
data mining untuk pendidikan
weka
url https://ejournal.unida.gontor.ac.id/index.php/FIJ/article/view/1216
work_keys_str_mv AT gitaindahmarthasari implementasiteknikdatamininguntukevaluasikinerjamahasiswaberdasarkandataakademik