Comparison of Conduction Based and Mediator Based Models for Microbial Fuel Cells

Microbial fuel cells (MFCs) are processes used for simultanuous bioenergy capturing and waste treatment. In this study, a model for MFCs based upon a conduction mechanism for electron transfer is proposed, which integrates substrate utilization, current production and conduction and  microbial distr...

Full description

Bibliographic Details
Main Authors: R. Sedaqatvand, M. Nasr Esfahany
Format: Article
Language:English
Published: Reaserch Institute of Petroleum Industry 2011-08-01
Series:Journal of Petroleum Science and Technology
Subjects:
Online Access:https://jpst.ripi.ir/article_41_d641d44b86f73f8ad09a9ea294f2d5f7.pdf
Description
Summary:Microbial fuel cells (MFCs) are processes used for simultanuous bioenergy capturing and waste treatment. In this study, a model for MFCs based upon a conduction mechanism for electron transfer is proposed, which integrates substrate utilization, current production and conduction and  microbial distribution and growth in batch flow mode. The outputs of the model and that of a mediator based model are compared with respect to reference experimental results under a well controled conditions using time evolution of produced current. The comparison shows that the electron shuttling mechanism appears to fail to predict the experimental data accurately enough while the conduction based model is able to reproduce measurements consistently.
ISSN:2251-659X
2645-3312