On a Maximal Subgroup 2^6:(3^. S6) of M24

The Mathieu group M24 has a maximal subgroup of the form G ̅=N:G, where N=26 and G=3. S6 ≅ 3. PGL2 (9). Using Atlas, we can see that M24 has only one maximal subgroup of type 26:(3. S6). The group is a split extension of an elementary abelian group, N=26 by a non-split extensionmgroup, G=3. S6. The...

Full description

Bibliographic Details
Main Authors: Dennis Chikopela, Thekiso Seretlo
Format: Article
Language:English
Published: University of Kashan 2022-09-01
Series:Mathematics Interdisciplinary Research
Subjects:
Online Access:https://mir.kashanu.ac.ir/article_112777_4e1f0384dc40e18b6b1c38cce416a193.pdf
_version_ 1797630850332884992
author Dennis Chikopela
Thekiso Seretlo
author_facet Dennis Chikopela
Thekiso Seretlo
author_sort Dennis Chikopela
collection DOAJ
description The Mathieu group M24 has a maximal subgroup of the form G ̅=N:G, where N=26 and G=3. S6 ≅ 3. PGL2 (9). Using Atlas, we can see that M24 has only one maximal subgroup of type 26:(3. S6). The group is a split extension of an elementary abelian group, N=26 by a non-split extensionmgroup, G=3. S6. The Fischer matrices for each class representative of G are computed which together with character tables of inertia factor groups of G lead to the full character table of G ̅. The complete fusion of G ̅ into the parent group M24 has been determined using the technique of set intersections of characters.
first_indexed 2024-03-11T11:13:46Z
format Article
id doaj.art-b6cffd5fc0a04cfb94dcd612861fbc0b
institution Directory Open Access Journal
issn 2476-4965
language English
last_indexed 2024-03-11T11:13:46Z
publishDate 2022-09-01
publisher University of Kashan
record_format Article
series Mathematics Interdisciplinary Research
spelling doaj.art-b6cffd5fc0a04cfb94dcd612861fbc0b2023-11-11T10:06:10ZengUniversity of KashanMathematics Interdisciplinary Research2476-49652022-09-017319721610.22052/mir.2022.243014.1300112777On a Maximal Subgroup 2^6:(3^. S6) of M24Dennis Chikopela0Thekiso Seretlo1Department of Mathematics, The Copperbelt University, Kitwe Campus, ZambiaDepartment of Mathematical and Computer Sciences, University of Limpopo, Polokwane, South AfricaThe Mathieu group M24 has a maximal subgroup of the form G ̅=N:G, where N=26 and G=3. S6 ≅ 3. PGL2 (9). Using Atlas, we can see that M24 has only one maximal subgroup of type 26:(3. S6). The group is a split extension of an elementary abelian group, N=26 by a non-split extensionmgroup, G=3. S6. The Fischer matrices for each class representative of G are computed which together with character tables of inertia factor groups of G lead to the full character table of G ̅. The complete fusion of G ̅ into the parent group M24 has been determined using the technique of set intersections of characters.https://mir.kashanu.ac.ir/article_112777_4e1f0384dc40e18b6b1c38cce416a193.pdfmathieu groupconjugacy classesirreducible charactersfischer matricesfusions
spellingShingle Dennis Chikopela
Thekiso Seretlo
On a Maximal Subgroup 2^6:(3^. S6) of M24
Mathematics Interdisciplinary Research
mathieu group
conjugacy classes
irreducible characters
fischer matrices
fusions
title On a Maximal Subgroup 2^6:(3^. S6) of M24
title_full On a Maximal Subgroup 2^6:(3^. S6) of M24
title_fullStr On a Maximal Subgroup 2^6:(3^. S6) of M24
title_full_unstemmed On a Maximal Subgroup 2^6:(3^. S6) of M24
title_short On a Maximal Subgroup 2^6:(3^. S6) of M24
title_sort on a maximal subgroup 2 6 3 s6 of m24
topic mathieu group
conjugacy classes
irreducible characters
fischer matrices
fusions
url https://mir.kashanu.ac.ir/article_112777_4e1f0384dc40e18b6b1c38cce416a193.pdf
work_keys_str_mv AT dennischikopela onamaximalsubgroup263s6ofm24
AT thekisoseretlo onamaximalsubgroup263s6ofm24