Onset of Color Transparency in Holographic Light-Front QCD

The color transparency (CT) of a hadron, propagating with reduced absorption in a nucleus, is a fundamental property of QCD (quantum chromodynamics) reflecting its internal structure and effective size when it is produced at high transverse momentum, <i>Q</i>. CT has been confirmed in ma...

Full description

Bibliographic Details
Main Authors: Stanley J. Brodsky, Guy F. de Téramond
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Physics
Subjects:
Online Access:https://www.mdpi.com/2624-8174/4/2/42
_version_ 1797483147845173248
author Stanley J. Brodsky
Guy F. de Téramond
author_facet Stanley J. Brodsky
Guy F. de Téramond
author_sort Stanley J. Brodsky
collection DOAJ
description The color transparency (CT) of a hadron, propagating with reduced absorption in a nucleus, is a fundamental property of QCD (quantum chromodynamics) reflecting its internal structure and effective size when it is produced at high transverse momentum, <i>Q</i>. CT has been confirmed in many experiments, such as semi-exclusive hard electroproduction, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>A</mi><mo>→</mo><msup><mi>e</mi><mo>′</mo></msup><mi>π</mi><mi>X</mi></mrow></semantics></math></inline-formula>, for mesons produced at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Q</mi><mn>2</mn></msup><mo>></mo><mn>3</mn><mspace width="3.33333pt"></mspace><msup><mrow><mi>GeV</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. However, a recent JLab (Jefferson Laboratory) measurement for a proton electroproduced in carbon <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mspace width="0.166667em"></mspace><mi mathvariant="normal">C</mi><mo>→</mo><msup><mi>e</mi><mo>′</mo></msup><mi>p</mi><mi>X</mi></mrow></semantics></math></inline-formula>, where <i>X</i> stands for the inclusive sum of all produced final states, fails to observe CT at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula> up to 14.2 GeV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>. In this paper, the onset of CT is determined by comparing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula>-dependence of the hadronic cross sections for the initial formation of a small color-singlet configuration using the generalized parton distributions from holographic light-front QCD. A critical dependence on the hadron’s twist, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, the number of hadron constituents, is found for the onset of CT, with no significant effects from the nuclear medium. This effect can explain the absence of proton CT in the present kinematic range of the JLab experiment. The proton is predicted to have a “two-stage” color transparency with the onset of CT differing for the spin-conserving (twist-3, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>) Dirac form factor with a higher onset in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula> for the spin-flip Pauli (twist-4) form factor. In contrast, the neutron is predicted to have a “one-stage” color transparency with the onset at higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula> because of the dominance of its Pauli form factor. The model also predicts a strong dependence at low energies on the flavor of the quark current coupling to the hadron.
first_indexed 2024-03-09T22:43:48Z
format Article
id doaj.art-b6e17216ff7b4476b0c028b71d21227e
institution Directory Open Access Journal
issn 2624-8174
language English
last_indexed 2024-03-09T22:43:48Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Physics
spelling doaj.art-b6e17216ff7b4476b0c028b71d21227e2023-11-23T18:33:57ZengMDPI AGPhysics2624-81742022-05-014263364610.3390/physics4020042Onset of Color Transparency in Holographic Light-Front QCDStanley J. Brodsky0Guy F. de Téramond1SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USALaboratorio de Física Teórica y Computacional, Universidad de Costa Rica, San José 11501, Costa RicaThe color transparency (CT) of a hadron, propagating with reduced absorption in a nucleus, is a fundamental property of QCD (quantum chromodynamics) reflecting its internal structure and effective size when it is produced at high transverse momentum, <i>Q</i>. CT has been confirmed in many experiments, such as semi-exclusive hard electroproduction, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>A</mi><mo>→</mo><msup><mi>e</mi><mo>′</mo></msup><mi>π</mi><mi>X</mi></mrow></semantics></math></inline-formula>, for mesons produced at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Q</mi><mn>2</mn></msup><mo>></mo><mn>3</mn><mspace width="3.33333pt"></mspace><msup><mrow><mi>GeV</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. However, a recent JLab (Jefferson Laboratory) measurement for a proton electroproduced in carbon <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mspace width="0.166667em"></mspace><mi mathvariant="normal">C</mi><mo>→</mo><msup><mi>e</mi><mo>′</mo></msup><mi>p</mi><mi>X</mi></mrow></semantics></math></inline-formula>, where <i>X</i> stands for the inclusive sum of all produced final states, fails to observe CT at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula> up to 14.2 GeV<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>. In this paper, the onset of CT is determined by comparing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula>-dependence of the hadronic cross sections for the initial formation of a small color-singlet configuration using the generalized parton distributions from holographic light-front QCD. A critical dependence on the hadron’s twist, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, the number of hadron constituents, is found for the onset of CT, with no significant effects from the nuclear medium. This effect can explain the absence of proton CT in the present kinematic range of the JLab experiment. The proton is predicted to have a “two-stage” color transparency with the onset of CT differing for the spin-conserving (twist-3, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>) Dirac form factor with a higher onset in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula> for the spin-flip Pauli (twist-4) form factor. In contrast, the neutron is predicted to have a “one-stage” color transparency with the onset at higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Q</mi><mn>2</mn></msup></semantics></math></inline-formula> because of the dominance of its Pauli form factor. The model also predicts a strong dependence at low energies on the flavor of the quark current coupling to the hadron.https://www.mdpi.com/2624-8174/4/2/42QCD color transparencyhigh-transverse-momentum reaction in nucleihadron electroproduction in nucleinuclear absorption
spellingShingle Stanley J. Brodsky
Guy F. de Téramond
Onset of Color Transparency in Holographic Light-Front QCD
Physics
QCD color transparency
high-transverse-momentum reaction in nuclei
hadron electroproduction in nuclei
nuclear absorption
title Onset of Color Transparency in Holographic Light-Front QCD
title_full Onset of Color Transparency in Holographic Light-Front QCD
title_fullStr Onset of Color Transparency in Holographic Light-Front QCD
title_full_unstemmed Onset of Color Transparency in Holographic Light-Front QCD
title_short Onset of Color Transparency in Holographic Light-Front QCD
title_sort onset of color transparency in holographic light front qcd
topic QCD color transparency
high-transverse-momentum reaction in nuclei
hadron electroproduction in nuclei
nuclear absorption
url https://www.mdpi.com/2624-8174/4/2/42
work_keys_str_mv AT stanleyjbrodsky onsetofcolortransparencyinholographiclightfrontqcd
AT guyfdeteramond onsetofcolortransparencyinholographiclightfrontqcd