Steel Converter Slag as an Oxygen Carrier—Interaction with Sulfur Dioxide

Steel converter slag, also called Linz-Donawitz (LD) slag, has been considered as an oxygen carrier for biofuel chemical looping applications due to its high availability. In addition to its content of iron which contributes to its oxygen-carrying capacity, LD slag also contains a significant amount...

Full description

Bibliographic Details
Main Authors: Fredrik Hildor, Henrik Leion, Tobias Mattisson
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/16/5922
Description
Summary:Steel converter slag, also called Linz-Donawitz (LD) slag, has been considered as an oxygen carrier for biofuel chemical looping applications due to its high availability. In addition to its content of iron which contributes to its oxygen-carrying capacity, LD slag also contains a significant amount of calcium. Calcium, however, is known to interact with sulfur, which may affect the usability of LD slag. To get a better understanding of the interaction between sulfur and LD slag, batch scale experiments have been performed using solid and gaseous fuel with or without sulfur dioxide, together with LD slag as an oxygen carrier. The reactivity and sulfur interaction were compared to the benchmark oxygen carrier ilmenite. Sulfur increases the gasification rate of biofuel char and the conversion of CO for both LD slag and ilmenite. However, no effect of sulfur could be seen on the conversion of the model tar species benzene. The increased gasification rate of char was suspected to originate from both surface-active sulfur and gaseous sulfur, increasing the reactivity and oxygen transfer of the oxygen carrier. Sulfur was partly absorbed into the LD slag particles with calcium, forming CaS and/or CaSO<sub>4</sub>. This, in turn, blocks the catalytic effect of CaO towards the water gas shift reaction. When the SO<sub>2</sub> vapor pressure was decreased, the absorbed sulfur was released as SO<sub>2</sub>. This indicates that sulfur may be released in loop-seals or in the air reactor in a continuous process.
ISSN:1996-1073