Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex.
Invariant sensory coding is the robust coding of some sensory information (e.g. stimulus type) despite major changes in other sensory parameters (e.g. stimulus strength). The contribution of large populations of neurons (ensembles) to invariant sensory coding is not well understood, but could offer...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-07-01
|
Series: | Frontiers in Neural Circuits |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fncir.2015.00034/full |
_version_ | 1823963661319798784 |
---|---|
author | Nathan S Jacobs Nathan S Jacobs Cynthia H Chen-Bee Cynthia H Chen-Bee Ron D Frostig Ron D Frostig Ron D Frostig |
author_facet | Nathan S Jacobs Nathan S Jacobs Cynthia H Chen-Bee Cynthia H Chen-Bee Ron D Frostig Ron D Frostig Ron D Frostig |
author_sort | Nathan S Jacobs |
collection | DOAJ |
description | Invariant sensory coding is the robust coding of some sensory information (e.g. stimulus type) despite major changes in other sensory parameters (e.g. stimulus strength). The contribution of large populations of neurons (ensembles) to invariant sensory coding is not well understood, but could offer distinct advantages over invariance in single cell receptive fields. To test invariant sensory coding in neuronal ensembles evoked by single whisker stimulation as early as primary sensory cortex, we recorded detailed spatiotemporal movies of evoked ensemble activity through the depth of rat barrel cortex using microelectrode arrays. We found that an emergent property of whisker evoked ensemble activity, its spatiotemporal profile, was notably invariant across major changes in stimulus amplitude (up to >200 fold). Such ensemble-based invariance was found for single whisker stimulation as well as for the integrated profile of activity evoked by the more naturalistic stimulation of the entire whisker array. Further, the integrated profile of whisker array evoked ensemble activity and its invariance to stimulus amplitude shares striking similarities to 'funneled' tactile perception in humans. We therefore suggest that ensemble-based invariance could provide a robust neurobiological substrate for invariant sensory coding and integration at an early stage of cortical sensory processing already in primary sensory cortex. |
first_indexed | 2024-12-17T17:33:41Z |
format | Article |
id | doaj.art-b6f664110415425a8000e33c0f8b356d |
institution | Directory Open Access Journal |
issn | 1662-5110 |
language | English |
last_indexed | 2024-12-17T17:33:41Z |
publishDate | 2015-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Neural Circuits |
spelling | doaj.art-b6f664110415425a8000e33c0f8b356d2022-12-21T21:39:24ZengFrontiers Media S.A.Frontiers in Neural Circuits1662-51102015-07-01910.3389/fncir.2015.00034144687Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex.Nathan S Jacobs0Nathan S Jacobs1Cynthia H Chen-Bee2Cynthia H Chen-Bee3Ron D Frostig4Ron D Frostig5Ron D Frostig6University of California, IrvineCenter for the Neurobiology of Learning and MemoryUniversity of California, IrvineCenter for the Neurobiology of Learning and MemoryUniversity of California, IrvineCenter for the Neurobiology of Learning and MemoryDepartment of Biomedical Engineering, University of California, IrvineInvariant sensory coding is the robust coding of some sensory information (e.g. stimulus type) despite major changes in other sensory parameters (e.g. stimulus strength). The contribution of large populations of neurons (ensembles) to invariant sensory coding is not well understood, but could offer distinct advantages over invariance in single cell receptive fields. To test invariant sensory coding in neuronal ensembles evoked by single whisker stimulation as early as primary sensory cortex, we recorded detailed spatiotemporal movies of evoked ensemble activity through the depth of rat barrel cortex using microelectrode arrays. We found that an emergent property of whisker evoked ensemble activity, its spatiotemporal profile, was notably invariant across major changes in stimulus amplitude (up to >200 fold). Such ensemble-based invariance was found for single whisker stimulation as well as for the integrated profile of activity evoked by the more naturalistic stimulation of the entire whisker array. Further, the integrated profile of whisker array evoked ensemble activity and its invariance to stimulus amplitude shares striking similarities to 'funneled' tactile perception in humans. We therefore suggest that ensemble-based invariance could provide a robust neurobiological substrate for invariant sensory coding and integration at an early stage of cortical sensory processing already in primary sensory cortex.http://journal.frontiersin.org/Journal/10.3389/fncir.2015.00034/fullbarrel cortexmulti-site recordingStimulus Invariancewhisker arraysensory funneling |
spellingShingle | Nathan S Jacobs Nathan S Jacobs Cynthia H Chen-Bee Cynthia H Chen-Bee Ron D Frostig Ron D Frostig Ron D Frostig Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex. Frontiers in Neural Circuits barrel cortex multi-site recording Stimulus Invariance whisker array sensory funneling |
title | Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex. |
title_full | Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex. |
title_fullStr | Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex. |
title_full_unstemmed | Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex. |
title_short | Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex. |
title_sort | emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex |
topic | barrel cortex multi-site recording Stimulus Invariance whisker array sensory funneling |
url | http://journal.frontiersin.org/Journal/10.3389/fncir.2015.00034/full |
work_keys_str_mv | AT nathansjacobs emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex AT nathansjacobs emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex AT cynthiahchenbee emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex AT cynthiahchenbee emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex AT rondfrostig emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex AT rondfrostig emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex AT rondfrostig emergenceofspatiotemporalinvarianceinlargeneuronalensemblesinratbarrelcortex |