On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN

We investigate the continuity of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem −Δu(x)=λg(x)u(x), x∈BR(0);u(x)=0, |x|=R, where BR(0) is a ball in ℝN, and g is a smooth function, and we show that λ1+(R) and λ1−(R) are continuous funct...

وصف كامل

التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ghasem Alizadeh Afrouzi
التنسيق: مقال
اللغة:English
منشور في: Wiley 2002-01-01
سلاسل:International Journal of Mathematics and Mathematical Sciences
الوصول للمادة أونلاين:http://dx.doi.org/10.1155/S0161171202007147
_version_ 1826827253579776000
author Ghasem Alizadeh Afrouzi
author_facet Ghasem Alizadeh Afrouzi
author_sort Ghasem Alizadeh Afrouzi
collection DOAJ
description We investigate the continuity of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem −Δu(x)=λg(x)u(x), x∈BR(0);u(x)=0, |x|=R, where BR(0) is a ball in ℝN, and g is a smooth function, and we show that λ1+(R) and λ1−(R) are continuous functions of R.
first_indexed 2025-02-16T08:28:57Z
format Article
id doaj.art-b6f90a3d5d1a4ad6bb2e818625a1b372
institution Directory Open Access Journal
issn 0161-1712
1687-0425
language English
last_indexed 2025-02-16T08:28:57Z
publishDate 2002-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj.art-b6f90a3d5d1a4ad6bb2e818625a1b3722025-02-03T05:51:27ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-0129527928310.1155/S0161171202007147On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝNGhasem Alizadeh Afrouzi0Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, IranWe investigate the continuity of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem −Δu(x)=λg(x)u(x), x∈BR(0);u(x)=0, |x|=R, where BR(0) is a ball in ℝN, and g is a smooth function, and we show that λ1+(R) and λ1−(R) are continuous functions of R.http://dx.doi.org/10.1155/S0161171202007147
spellingShingle Ghasem Alizadeh Afrouzi
On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN
International Journal of Mathematics and Mathematical Sciences
title On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN
title_full On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN
title_fullStr On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN
title_full_unstemmed On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN
title_short On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ℝN
title_sort on the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in rn
url http://dx.doi.org/10.1155/S0161171202007147
work_keys_str_mv AT ghasemalizadehafrouzi onthecontinuityofprincipaleigenvaluesforboundaryvalueproblemswithindefiniteweightfunctionwithrespecttoradiusofballsinrn