A computational lens into how music characterizes genre in film.

Film music varies tremendously across genre in order to bring about different responses in an audience. For instance, composers may evoke passion in a romantic scene with lush string passages or inspire fear throughout horror films with inharmonious drones. This study investigates such phenomena thr...

Full description

Bibliographic Details
Main Authors: Benjamin Ma, Timothy Greer, Dillon Knox, Shrikanth Narayanan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0249957&type=printable
Description
Summary:Film music varies tremendously across genre in order to bring about different responses in an audience. For instance, composers may evoke passion in a romantic scene with lush string passages or inspire fear throughout horror films with inharmonious drones. This study investigates such phenomena through a quantitative evaluation of music that is associated with different film genres. We construct supervised neural network models with various pooling mechanisms to predict a film's genre from its soundtrack. We use these models to compare handcrafted music information retrieval (MIR) features against VGGish audio embedding features, finding similar performance with the top-performing architectures. We examine the best-performing MIR feature model through permutation feature importance (PFI), determining that mel-frequency cepstral coefficient (MFCC) and tonal features are most indicative of musical differences between genres. We investigate the interaction between musical and visual features with a cross-modal analysis, and do not find compelling evidence that music characteristic of a certain genre implies low-level visual features associated with that genre. Furthermore, we provide software code to replicate this study at https://github.com/usc-sail/mica-music-in-media. This work adds to our understanding of music's use in multi-modal contexts and offers the potential for future inquiry into human affective experiences.
ISSN:1932-6203