Solvable product-type system of difference equations of second order

We show that the system of difference equations $$ z_{n+1}=\frac{w_n^a}{z_{n-1}^b},\quad w_{n+1}=\frac{z_n^c}{w_{n-1}^d},\quad n\in\mathbb{N}_0, $$ where $a,b,c,d\in\mathbb{Z}$, and initial values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}$, is solvable in closed form, and present a method for...

Full description

Bibliographic Details
Main Authors: Stevo Stevic, Mohammed A. Alghamdi, Abdullah Alotaibi, Elsayed M. Elsayed
Format: Article
Language:English
Published: Texas State University 2015-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/169/abstr.html
_version_ 1818869992024702976
author Stevo Stevic
Mohammed A. Alghamdi
Abdullah Alotaibi
Elsayed M. Elsayed
author_facet Stevo Stevic
Mohammed A. Alghamdi
Abdullah Alotaibi
Elsayed M. Elsayed
author_sort Stevo Stevic
collection DOAJ
description We show that the system of difference equations $$ z_{n+1}=\frac{w_n^a}{z_{n-1}^b},\quad w_{n+1}=\frac{z_n^c}{w_{n-1}^d},\quad n\in\mathbb{N}_0, $$ where $a,b,c,d\in\mathbb{Z}$, and initial values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}$, is solvable in closed form, and present a method for finding its solutions.
first_indexed 2024-12-19T11:59:56Z
format Article
id doaj.art-b710b450cb2c463099aad2f52eae4131
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-19T11:59:56Z
publishDate 2015-06-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-b710b450cb2c463099aad2f52eae41312022-12-21T20:22:31ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-06-012015169,120Solvable product-type system of difference equations of second orderStevo Stevic0Mohammed A. Alghamdi1Abdullah Alotaibi2Elsayed M. Elsayed3 Serbian Academy of Sciences, Beograd, Serbia King Abdulaziz Univ. Jeddah, Saudi Arabia King Abdulaziz Univ. Jeddah, Saudi Arabia King Abdulaziz Univ. Jeddah, Saudi Arabia We show that the system of difference equations $$ z_{n+1}=\frac{w_n^a}{z_{n-1}^b},\quad w_{n+1}=\frac{z_n^c}{w_{n-1}^d},\quad n\in\mathbb{N}_0, $$ where $a,b,c,d\in\mathbb{Z}$, and initial values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}$, is solvable in closed form, and present a method for finding its solutions.http://ejde.math.txstate.edu/Volumes/2015/169/abstr.htmlSolvable system of difference equationssecond-order systemproduct-type systemlong-term behavior
spellingShingle Stevo Stevic
Mohammed A. Alghamdi
Abdullah Alotaibi
Elsayed M. Elsayed
Solvable product-type system of difference equations of second order
Electronic Journal of Differential Equations
Solvable system of difference equations
second-order system
product-type system
long-term behavior
title Solvable product-type system of difference equations of second order
title_full Solvable product-type system of difference equations of second order
title_fullStr Solvable product-type system of difference equations of second order
title_full_unstemmed Solvable product-type system of difference equations of second order
title_short Solvable product-type system of difference equations of second order
title_sort solvable product type system of difference equations of second order
topic Solvable system of difference equations
second-order system
product-type system
long-term behavior
url http://ejde.math.txstate.edu/Volumes/2015/169/abstr.html
work_keys_str_mv AT stevostevic solvableproducttypesystemofdifferenceequationsofsecondorder
AT mohammedaalghamdi solvableproducttypesystemofdifferenceequationsofsecondorder
AT abdullahalotaibi solvableproducttypesystemofdifferenceequationsofsecondorder
AT elsayedmelsayed solvableproducttypesystemofdifferenceequationsofsecondorder