Dispersive analysis of the Primakoff reaction $$\gamma K \rightarrow K \pi $$ γ K → K π
Abstract We provide a dispersion-theoretical representation of the reaction amplitudes $$\gamma K\rightarrow K \pi $$ γ K → K π in all charge channels, based on modern pion–kaon P-wave phase shift input. Crossed-channel singularities are fixed from phenomenology as far as possible. We demonstrate ho...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-03-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-08951-x |
Summary: | Abstract We provide a dispersion-theoretical representation of the reaction amplitudes $$\gamma K\rightarrow K \pi $$ γ K → K π in all charge channels, based on modern pion–kaon P-wave phase shift input. Crossed-channel singularities are fixed from phenomenology as far as possible. We demonstrate how the subtraction constants can be matched to a low-energy theorem and radiative couplings of the $$K^*(892)$$ K ∗ ( 892 ) resonances, thereby providing a model-independent framework for future analyses of high-precision kaon Primakoff data. |
---|---|
ISSN: | 1434-6044 1434-6052 |