Tracking the Convection Potential Based on a Foundation Remote Sensing Air Sounding Profile System

Using ground-based remote sensing equipment (wind profile radar and microwave radiometer) data and ground automatic station data, a ground-based remote sensing sounding profile system (FAS) is constructed, which aims to make use of its advantages of high resolution, high accuracy, and low cost to ma...

Full description

Bibliographic Details
Main Authors: Xiaomeng Lin, Hong Chen, Nan Zhang, Yinghua Wei, Yiwei Liu, Yanchun Wang
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/7/1117
Description
Summary:Using ground-based remote sensing equipment (wind profile radar and microwave radiometer) data and ground automatic station data, a ground-based remote sensing sounding profile system (FAS) is constructed, which aims to make use of its advantages of high resolution, high accuracy, and low cost to make up for the lack of space–time density in existing conventional sounding layer information. The retrieval results of remote sensing sounding profiles in Beijing from May 2021 to September 2022 were tested and evaluated. The results show that the correlation coefficient between FAS and conventional sounding specific humidity is 0.89, the root–mean–square deviation is 1.53 g/kg, and the evolution trends of different data sources of convective available potential energy (CAPE) and vertical wind shear are synchronous. A case study was conducted to evaluate the effectiveness of 40 severe convective processes in the Beijing Plain area. The results show that, due to the minute-level time resolution of FAS, the retrieved convective parameters could track the evolution trend of the atmospheric state with high timeliness, dynamically describe the configuration of thermodynamic parameters, and indicate the time-varying local convective potential and instability level. Therefore, it has certain short-term forecasting significance for the occurrence time, intensity, and convection type.
ISSN:2073-4433