Hitting Distribution of a Correlated Planar Brownian Motion in a Disk

In this article, we study the hitting probability of a circumference <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>R</mi></msub></semantics></math>...

Full description

Bibliographic Details
Main Authors: Manfred Marvin Marchione, Enzo Orsingher
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/4/536
_version_ 1797478359634018304
author Manfred Marvin Marchione
Enzo Orsingher
author_facet Manfred Marvin Marchione
Enzo Orsingher
author_sort Manfred Marvin Marchione
collection DOAJ
description In this article, we study the hitting probability of a circumference <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>R</mi></msub></semantics></math></inline-formula> for a correlated Brownian motion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><munder><mi>B</mi><mo>̲</mo></munder><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced separators="" open="(" close=")"><msub><mi>B</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>B</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> being the correlation coefficient. The analysis starts by first mapping the circle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>R</mi></msub></semantics></math></inline-formula> into an ellipse <i>E</i> with semiaxes depending on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> and transforming the differential operator governing the hitting distribution into the classical Laplace operator. By means of two different approaches (one obtained by applying elliptic coordinates) we obtain the desired distribution as a series of Poisson kernels.
first_indexed 2024-03-09T21:31:45Z
format Article
id doaj.art-b72134d5052c4af89bde1e2986ff2966
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:31:45Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b72134d5052c4af89bde1e2986ff29662023-11-23T20:56:15ZengMDPI AGMathematics2227-73902022-02-0110453610.3390/math10040536Hitting Distribution of a Correlated Planar Brownian Motion in a DiskManfred Marvin Marchione0Enzo Orsingher1Department of Statistical Sciences, Sapienza University of Rome, 00185 Rome, ItalyDepartment of Statistical Sciences, Sapienza University of Rome, 00185 Rome, ItalyIn this article, we study the hitting probability of a circumference <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>R</mi></msub></semantics></math></inline-formula> for a correlated Brownian motion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><munder><mi>B</mi><mo>̲</mo></munder><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced separators="" open="(" close=")"><msub><mi>B</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>B</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> being the correlation coefficient. The analysis starts by first mapping the circle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>R</mi></msub></semantics></math></inline-formula> into an ellipse <i>E</i> with semiaxes depending on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> and transforming the differential operator governing the hitting distribution into the classical Laplace operator. By means of two different approaches (one obtained by applying elliptic coordinates) we obtain the desired distribution as a series of Poisson kernels.https://www.mdpi.com/2227-7390/10/4/536elliptic coordinatesPoisson kernelGhizzetti transformation
spellingShingle Manfred Marvin Marchione
Enzo Orsingher
Hitting Distribution of a Correlated Planar Brownian Motion in a Disk
Mathematics
elliptic coordinates
Poisson kernel
Ghizzetti transformation
title Hitting Distribution of a Correlated Planar Brownian Motion in a Disk
title_full Hitting Distribution of a Correlated Planar Brownian Motion in a Disk
title_fullStr Hitting Distribution of a Correlated Planar Brownian Motion in a Disk
title_full_unstemmed Hitting Distribution of a Correlated Planar Brownian Motion in a Disk
title_short Hitting Distribution of a Correlated Planar Brownian Motion in a Disk
title_sort hitting distribution of a correlated planar brownian motion in a disk
topic elliptic coordinates
Poisson kernel
Ghizzetti transformation
url https://www.mdpi.com/2227-7390/10/4/536
work_keys_str_mv AT manfredmarvinmarchione hittingdistributionofacorrelatedplanarbrownianmotioninadisk
AT enzoorsingher hittingdistributionofacorrelatedplanarbrownianmotioninadisk