Spontaneous mirror left-right symmetry breaking for leptogenesis parametrized by Majorana neutrino mass matrix
Abstract We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B−L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity sy...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2017)016 |
Summary: | Abstract We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B−L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor. |
---|---|
ISSN: | 1029-8479 |