Characterization Of Super-Radial Graphs

In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, r(G), of the graph and the maximum eccentricity is call...

Full description

Bibliographic Details
Main Authors: Kathiresan K.M., Marimuthu G., Parameswaran C.
Format: Article
Language:English
Published: University of Zielona Góra 2014-11-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1769
Description
Summary:In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, r(G), of the graph and the maximum eccentricity is called the diameter, d(G), of the graph. The super-radial graph R*(G) based on G has the vertex set as in G and two vertices u and v are adjacent in R*(G) if the distance between them in G is greater than or equal to d(G) − r(G) + 1 in G. If G is disconnected, then two vertices are adjacent in R*(G) if they belong to different components. A graph G is said to be a super-radial graph if it is a super-radial graph R*(H) of some graph H. The main objective of this paper is to solve the graph equation R*(H) = G for a given graph G.
ISSN:2083-5892