Bias-Corrected Inference of High-Dimensional Generalized Linear Models
In this paper, we propose a weighted link-specific (WLS) approach that establishes a unified statistical inference framework for high-dimensional Poisson and Gamma regression. We regress the parameter deviations as well as the initial estimation errors and utilize the resulting regression coefficien...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/4/932 |
Summary: | In this paper, we propose a weighted link-specific (WLS) approach that establishes a unified statistical inference framework for high-dimensional Poisson and Gamma regression. We regress the parameter deviations as well as the initial estimation errors and utilize the resulting regression coefficients as correction weights to reduce the total mean square error (MSE). We also develop the asymptotic normality of the correction estimates under sparse and non-sparse conditions and construct associated confidence intervals (CIs) to verify the robustness of the new method. Finally, numerical simulations and empirical analysis show that the WLS method is extensive and effective. |
---|---|
ISSN: | 2227-7390 |