Positive solutions and global bifurcation of strongly coupled elliptic systems
In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain condi...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2013-03-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2013/82/abstr.html |
_version_ | 1818472865134018560 |
---|---|
author | Jagmohan Tyagi |
author_facet | Jagmohan Tyagi |
author_sort | Jagmohan Tyagi |
collection | DOAJ |
description | In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system. |
first_indexed | 2024-04-14T04:13:18Z |
format | Article |
id | doaj.art-b755169c2edb40b08b63f912ef318ad1 |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-04-14T04:13:18Z |
publishDate | 2013-03-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-b755169c2edb40b08b63f912ef318ad12022-12-22T02:13:01ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-03-01201382,111Positive solutions and global bifurcation of strongly coupled elliptic systemsJagmohan TyagiIn this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system.http://ejde.math.txstate.edu/Volumes/2013/82/abstr.htmlElliptic systembifurcationpositive solutions |
spellingShingle | Jagmohan Tyagi Positive solutions and global bifurcation of strongly coupled elliptic systems Electronic Journal of Differential Equations Elliptic system bifurcation positive solutions |
title | Positive solutions and global bifurcation of strongly coupled elliptic systems |
title_full | Positive solutions and global bifurcation of strongly coupled elliptic systems |
title_fullStr | Positive solutions and global bifurcation of strongly coupled elliptic systems |
title_full_unstemmed | Positive solutions and global bifurcation of strongly coupled elliptic systems |
title_short | Positive solutions and global bifurcation of strongly coupled elliptic systems |
title_sort | positive solutions and global bifurcation of strongly coupled elliptic systems |
topic | Elliptic system bifurcation positive solutions |
url | http://ejde.math.txstate.edu/Volumes/2013/82/abstr.html |
work_keys_str_mv | AT jagmohantyagi positivesolutionsandglobalbifurcationofstronglycoupledellipticsystems |