Positive solutions and global bifurcation of strongly coupled elliptic systems

In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain condi...

Full description

Bibliographic Details
Main Author: Jagmohan Tyagi
Format: Article
Language:English
Published: Texas State University 2013-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/82/abstr.html
_version_ 1818472865134018560
author Jagmohan Tyagi
author_facet Jagmohan Tyagi
author_sort Jagmohan Tyagi
collection DOAJ
description In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system.
first_indexed 2024-04-14T04:13:18Z
format Article
id doaj.art-b755169c2edb40b08b63f912ef318ad1
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-14T04:13:18Z
publishDate 2013-03-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-b755169c2edb40b08b63f912ef318ad12022-12-22T02:13:01ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-03-01201382,111Positive solutions and global bifurcation of strongly coupled elliptic systemsJagmohan TyagiIn this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system.http://ejde.math.txstate.edu/Volumes/2013/82/abstr.htmlElliptic systembifurcationpositive solutions
spellingShingle Jagmohan Tyagi
Positive solutions and global bifurcation of strongly coupled elliptic systems
Electronic Journal of Differential Equations
Elliptic system
bifurcation
positive solutions
title Positive solutions and global bifurcation of strongly coupled elliptic systems
title_full Positive solutions and global bifurcation of strongly coupled elliptic systems
title_fullStr Positive solutions and global bifurcation of strongly coupled elliptic systems
title_full_unstemmed Positive solutions and global bifurcation of strongly coupled elliptic systems
title_short Positive solutions and global bifurcation of strongly coupled elliptic systems
title_sort positive solutions and global bifurcation of strongly coupled elliptic systems
topic Elliptic system
bifurcation
positive solutions
url http://ejde.math.txstate.edu/Volumes/2013/82/abstr.html
work_keys_str_mv AT jagmohantyagi positivesolutionsandglobalbifurcationofstronglycoupledellipticsystems