Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes

The deployment of machine learning (ML) systems in applications with societal impact has motivated the study of fairness for marginalized groups. Often, the protected attribute is absent from the training dataset for legal reasons. However, datasets still contain proxy attributes that capture protec...

Celý popis

Podrobná bibliografie
Hlavní autoři: Sainyam Galhotra, Karthikeyan Shanmugam, Prasanna Sattigeri, Kush R. Varshney
Médium: Článek
Jazyk:English
Vydáno: MDPI AG 2021-11-01
Edice:Entropy
Témata:
On-line přístup:https://www.mdpi.com/1099-4300/23/12/1571