Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths
Quenching and partitioning (QP) steel has attracted much focus due to the effect of phase transformation induced plasticity (TRIP). However, the TRIP behavior makes it difficult to accurately predict the strain and stress distribution as well as the phase transformation behavior of QP steel. Scannin...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/13/4/823 |
_version_ | 1797604332923781120 |
---|---|
author | Zhiqin Lv Enkai Dai Ning Guo Panpan Yuan Guoqiang Liu Bingtao Tang |
author_facet | Zhiqin Lv Enkai Dai Ning Guo Panpan Yuan Guoqiang Liu Bingtao Tang |
author_sort | Zhiqin Lv |
collection | DOAJ |
description | Quenching and partitioning (QP) steel has attracted much focus due to the effect of phase transformation induced plasticity (TRIP). However, the TRIP behavior makes it difficult to accurately predict the strain and stress distribution as well as the phase transformation behavior of QP steel. Scanning electron microscope (SEM) images of the QP980 microstructure were produced in this study, characterized by a combination of lath martensite, polygonal ferrite and retained austenite. The volume fraction evolution of retained austenite with equivalent plastic strain (EPS) of uniaxial tension was obtained by electron-backscatter diffraction. The phase transformation kinetics equations of QP980 were deduced based on the phase transformation model proposed by Olson and Cohen (simplified as O-C theory), considering the effects of strain rate, deformation temperature and stress state. A constitutive model on the dependence of the phase transformation was proposed to reveal the relation between metallographic characteristics and mechanical performance of QP980 steel during deformation. The User subroutine VUMAT in ABAQUS/Explicit was implemented to describe the volume fraction of retained austenite (VFRA) under different stress states. The established phase transformation and constitutive model were applied to three kinds of complex path loading tests. The variation in the retained austenite under complex strain paths was obtained and compared with the experimental results. |
first_indexed | 2024-03-11T04:44:58Z |
format | Article |
id | doaj.art-b7663a01cb004f2387c3bbfbb454d624 |
institution | Directory Open Access Journal |
issn | 2075-4701 |
language | English |
last_indexed | 2024-03-11T04:44:58Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Metals |
spelling | doaj.art-b7663a01cb004f2387c3bbfbb454d6242023-11-17T20:28:12ZengMDPI AGMetals2075-47012023-04-0113482310.3390/met13040823Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading PathsZhiqin Lv0Enkai Dai1Ning Guo2Panpan Yuan3Guoqiang Liu4Bingtao Tang5School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, ChinaSchool of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, ChinaSchool of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, ChinaSchool of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, ChinaSchool of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, ChinaSchool of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, ChinaQuenching and partitioning (QP) steel has attracted much focus due to the effect of phase transformation induced plasticity (TRIP). However, the TRIP behavior makes it difficult to accurately predict the strain and stress distribution as well as the phase transformation behavior of QP steel. Scanning electron microscope (SEM) images of the QP980 microstructure were produced in this study, characterized by a combination of lath martensite, polygonal ferrite and retained austenite. The volume fraction evolution of retained austenite with equivalent plastic strain (EPS) of uniaxial tension was obtained by electron-backscatter diffraction. The phase transformation kinetics equations of QP980 were deduced based on the phase transformation model proposed by Olson and Cohen (simplified as O-C theory), considering the effects of strain rate, deformation temperature and stress state. A constitutive model on the dependence of the phase transformation was proposed to reveal the relation between metallographic characteristics and mechanical performance of QP980 steel during deformation. The User subroutine VUMAT in ABAQUS/Explicit was implemented to describe the volume fraction of retained austenite (VFRA) under different stress states. The established phase transformation and constitutive model were applied to three kinds of complex path loading tests. The variation in the retained austenite under complex strain paths was obtained and compared with the experimental results.https://www.mdpi.com/2075-4701/13/4/823QP steelconstitutive modeltransformation kineticscomplex loading |
spellingShingle | Zhiqin Lv Enkai Dai Ning Guo Panpan Yuan Guoqiang Liu Bingtao Tang Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths Metals QP steel constitutive model transformation kinetics complex loading |
title | Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths |
title_full | Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths |
title_fullStr | Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths |
title_full_unstemmed | Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths |
title_short | Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths |
title_sort | strain induced phase transformation modeling of qp980 steel and its application to complex loading paths |
topic | QP steel constitutive model transformation kinetics complex loading |
url | https://www.mdpi.com/2075-4701/13/4/823 |
work_keys_str_mv | AT zhiqinlv straininducedphasetransformationmodelingofqp980steelanditsapplicationtocomplexloadingpaths AT enkaidai straininducedphasetransformationmodelingofqp980steelanditsapplicationtocomplexloadingpaths AT ningguo straininducedphasetransformationmodelingofqp980steelanditsapplicationtocomplexloadingpaths AT panpanyuan straininducedphasetransformationmodelingofqp980steelanditsapplicationtocomplexloadingpaths AT guoqiangliu straininducedphasetransformationmodelingofqp980steelanditsapplicationtocomplexloadingpaths AT bingtaotang straininducedphasetransformationmodelingofqp980steelanditsapplicationtocomplexloadingpaths |